Rectilinear Figures

Exercise 13.1

Question 1.

If two angles of a quadrilateral are 40° and 110° and the other two are in the ratio 3 : 4, find these angles.

Solution:

Sum of four angles of a quadrilateral = 360° Sum of two given angles = $40^{\circ} + 110^{\circ} = 150^{\circ}$

 ∴ Sum of remaining two angles = 360°-150 = 210°
 Ratio in these angles = 3 : 4

$$\therefore \text{ Third angle} = \frac{210^{\circ} \times 3}{3+4}$$

$$=\frac{210^{\circ}\times3}{7}=90^{\circ}$$

and fourth angle = $\frac{210^{\circ} \times 4}{3+4}$

$$=\frac{210^{\circ}\times4}{7}=120^{\circ}$$

Question 2.

If the angles of a quadrilateral, taken in order, are in the ratio 1 : 2 : 3 : 4, prove that it is a trapezium. Solution:

In trapezium ABCD $\angle A : \angle B : \angle C : \angle D = 1 : 2 : 3 : 4$ Sum of angles of the quad. ABCD = 360° Sum of the ratio's = 1 + 2 + 3 + 4 = 10

$$\therefore \angle A = \frac{360^{\circ} \times 1}{10} = 36^{\circ}$$

$$\angle B = \frac{360^{\circ} \times 2}{10} = 72^{\circ}$$

$$\angle C = \frac{360^{\circ} \times 3}{10} = 108^{\circ}$$

$$\angle D = \frac{360^{\circ} \times 4}{10} = 144^{\circ}$$

Now $\angle A + \angle D = 36^{\circ} + 114^{\circ} = 180^{\circ}$

- $\therefore \angle A + \angle D = 180^{\circ}$ and these are co-interior angles
- ∴ AB∥DC

Hence ABCD is a trapezium

Question 3.

If an angle of a parallelogram is two-thirds of its adjacent angle, find the angles of the parallelogram.

Solution:

Here ABCD is a parallelogram.

Let $\angle A = x^{\circ}$ then $\angle B = \frac{2}{3} x^{\circ}$

(given condition an angle of a parallelogram is two third of its adjacent angle.)

 $\therefore \ \angle A + \angle B = 180^{\circ}$

(:: sum of adjacent angle in parallelogram is 180°)

$$\Rightarrow x^{\circ} + \frac{2}{3} x^{\circ} = 180^{\circ} \Rightarrow \frac{3x + 2x}{3} = 180$$

$$\Rightarrow \quad \frac{5x}{3} = 180 \quad \Rightarrow \quad 5x = 180 \times 3$$

$$\Rightarrow x = \frac{180 \times 3}{5} \Rightarrow x = 36 \times 3 \Rightarrow x = 108$$

$$\angle \mathbf{B} = \frac{2}{3} \times 108^\circ = 2 \times 36^\circ = 72^\circ$$

∠B = ∠D = 72°

(opposite angle in parallelogram is same)

Also, $\angle A = \angle C = 108^{\circ}$

(opposite angles in parallelogram is same) Hence, angles of parallelogram are 108° , 72° , 108° , 72°

Question 4.

(a) In figure (1) given below, ABCD is a parallelogram in which $\angle DAB = 70^\circ$, $\angle DBC = 80^\circ$. Calculate angles CDB and ADB.

(b) In figure (2) given below, ABCD is a parallelogram. Find the angles of the AAOD.

(c) In figure (3) given below, ABCD is a rhombus. Find the value of x.

Solution:

(a) ·· ABCD is || gm ∴ AB || CD $\angle ADB = \angle DBC$ (Alternate angles) $\angle ADB = 80^{\circ}$ [·· $\angle DBC = 80^{\circ}$ (given)]

In $\triangle ADB$,

 $\angle A + \angle ADB + \angle ABD = 180^{\circ}$ (sum of all angles in a triangle is 180°) $\Rightarrow 70^{\circ} + 80^{\circ} + \angle ABD = 180^{\circ}$ $\Rightarrow 150^{\circ} + \angle ABD = 180^{\circ}$ $\Rightarrow \angle ABD = 180^{\circ} - 150^{\circ}$ $\Rightarrow \angle ABD = 30^{\circ} \qquad \dots(2)$ Now $\angle CDB = \angle ABD \qquad \dots(3)$ [$\because AB \parallel CD$, (Alternate angles)] From (2) and (3) $\angle CDB = 30^{\circ} \qquad \dots(4)$ From (1) and (4) $\angle CDB = 30^{\circ} \text{ and } \angle ABD = 80^{\circ}$ (b) Given $\angle BCO = 35^{\circ}$, $\angle CBO = 77^{\circ}$

In ΔBOC

 $\angle BOC + \angle BCO + \angle CBO = 180^{\circ}$

(Sum of all angles in a triangle is 180°)

We have,

∠AOD=∠BOC

(vertically opposite angles)

- ∴ ∠AOD=68°
- (c) ABCD is a rhombus ∠A + ∠B = 180°
 (In rhombus sum of adjacent angle is 180°)

 $\Rightarrow 72^\circ + \angle B = 180^\circ \Rightarrow \angle B = 180^\circ - 72^\circ$ $\Rightarrow \angle B = 108^\circ$ $\therefore x = \frac{1}{2} \angle B = \frac{1}{2} \times 108^\circ = 54^\circ$

Question 5.

(a) In figure (1) given below, ABCD is a parallelogram with perimeter 40. Find the

values of x and y.

(b) In figure (2) given below. ABCD is a parallelogram. Find the values of x and y.(c) In figure (3) given below. ABCD is a rhombus. Find x and y.Solution:

(a) Since ABCD is a parallelogram. \therefore AB = CD and BC = AD \therefore 3x = 2y + 2 (AB = CD)3x - 2y = 2....(1) Also, AB + BC + CD + DA = 40 \Rightarrow 3x+2x+2y+2+2x = 40 \Rightarrow 7x+2y=40-2 \Rightarrow 7x+2y=38(2) Adding (1) and (2), 3x-2y=27x + 2y = 3810x = 40. $\Rightarrow x = \frac{40}{10} = 4$

Substituting the value of x in (1), we get

 $3 \times 4 - 2y = 2 \implies 12 - 2y = 2 \implies -2y = 2 - 12$ $\implies -2y = -10 \implies y = \frac{-10}{-2}$

 $\therefore y=5$ Hence, x = 4, y = 5 Ans. (b) In parallelogram ABCD $\angle A = \angle C$ (opposite angles are same in ||gm) \Rightarrow 3x-20° = x + 40° \Rightarrow 3x - x = 40° + 20° $\Rightarrow 2x = 60^{\circ}$ ·... $\Rightarrow x = \frac{60^{\circ}}{-2}$ $\Rightarrow x = 30^{\circ}$(1) Also, $\angle A + \angle B = 180^{\circ}$ (sum of adjacent angles in ||gm is equal to 180°) \Rightarrow 3x-20°+y+15°=180° \Rightarrow $3x+y-5^\circ = 180^\circ \Rightarrow$ $3x+y=180^\circ + 5^\circ$ $3x + y = 185^{\circ} \implies 3 \times 30^{\circ} + y = 185^{\circ}$ ⇒ [Putting the value of x From (1)] \Rightarrow 90° + y = 185° \Rightarrow y = 185° - 90° $\Rightarrow y = 95^{\circ}$ Hence, $x = 30^{\circ}$, $y = 95^{\circ}$

(c) ABCD is a rhombus $\therefore AB = AD$ \Rightarrow 3x+2=4x-4 $\Rightarrow 3x-4x=-4-2$ $\Rightarrow -x = -6$ $\Rightarrow x=6$(1) In $\triangle ABD$, $\therefore \angle BAD = 60^\circ$, Also AB = AD ∴ ∠ADB=∠ABD $\therefore \quad \angle ADB = \frac{180^\circ - \angle BAD}{2}$ $=\frac{180^{\circ}-60^{\circ}}{2}=\frac{120^{\circ}}{2}=60^{\circ}$ $\triangle ABD$ is equilateral triangle (:: each angles of this triangle are 60°) $\therefore AB = BD$ \Rightarrow 3x+2=y-1 \Rightarrow 3×6+2=y-1 [substituting the value of x from (1)] \Rightarrow 18+2=y-1 \Rightarrow 20=y-1 \Rightarrow y-1=20 \Rightarrow y=20+1 \Rightarrow y=21 Hence, x = 6 and y = 21

Question 6.

The diagonals AC and BD of a rectangle > ABCD intersect each other at P. If $\angle ABD = 50^{\circ}$, find $\angle DPC$.

Solution:

ABCD is a rectangle

Since diagonals of rectangle are same and bisect each other.

- \therefore AP = BP
- $\therefore \angle PAB = \angle PBA$

(equal sides have equal opposite angles)

$$\Rightarrow \angle PAB = 50^{\circ} \qquad [\because \angle PBA = 50^{\circ} \text{ (given)}]$$

In $\triangle APB$,

$$\angle APB + \angle ABP + \angle BAP = 180^{\circ}$$

$$\Rightarrow \angle APB + 50^{\circ} + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle APB = 180^{\circ} - 100^{\circ}$$

$$\Rightarrow \angle APB = 80^{\circ} \qquad \dots (1)$$

$$\therefore \angle DPB = \angle APB \qquad \dots (2)$$
(vertically opposite angles)
From (1) and (2)

∠DPB = 80°

Question 7.

(a) In figure (1) given below, equilateral triangle EBC surmounts square ABCD. Find angle BED represented by x.

(b) In figure (2) given below, ABCD is a rectangle and diagonals intersect at O. AC is produced to E. If \angle ECD = 146°, find the angles of the \triangle AOB.

(c) In figure (3) given below, ABCD is rhombus and diagonals intersect at O. If $\angle OAB : \angle OBA = 3:2$, find the angles of the \triangle AOD.

Solution:

(a) Since EBC is an equilateral triangle EB = BC = EC $\therefore EB = BC = EC$(1) Also, ABCD is a square AB = BC = CD = AD....(2) From (1) and (2), EB = EC = AB = BC = CD = AD(3) In ΔECD , $\angle ECD = \angle BCD + \angle ECB$ (BEC is an equilateral triangle) ⇒ $\angle ECD = 90^{\circ} + 60^{\circ} = 150^{\circ}$(4) Also, EC = CD[From (3)] ∴ ∠DEC=∠CDE(5) $\angle ECD + \angle DEC + \angle CDE = 180^{\circ}$ (sum of all angles in a triangle is 180°) $150^{\circ} + \angle DEC + \angle DEC = 180^{\circ}$ ⇒ (using (4) and (5)) $2 \angle DEC = 180^\circ - 150^\circ \implies 2 \angle DEC = 30^\circ$ ⇒ $\angle DEC = \frac{30^\circ}{2} \implies \angle DEC = 15^\circ$ ⇒(6) Now $\angle BEC = 60^{\circ}$ (BEC is an equilateral triangle) $\angle BED + \angle DEC = 60^\circ \implies x^\circ + 15^\circ = 60^\circ$ ⇒ [From (6)] \Rightarrow $x = 60^{\circ} - 15^{\circ} \Rightarrow$ $x = 45^{\circ}$ Hence, value of $x = 45^{\circ}$

(b) Since ABCD is a rectangle ∠ECD = 146° (given) : ACE is a st. line \therefore 146° + \angle ACD = 180° (linear pair) \Rightarrow $\angle ACD = 180^{\circ} - 146^{\circ}$(1) $\Rightarrow \angle ACD = 34^{\circ}$ $\therefore \angle CAB = \angle ACD$ (Alternate angles) ...(2) [∵ AB || CD] From (1) and (2) $\Rightarrow \angle CAB = 34^{\circ} \Rightarrow \angle OAB = 34^{\circ}$(3) In ∠AOB . AO = OB(In rectangle diagonals are same & bisect each other) ⇒ ∠OAB = ∠OBA ...(4)

(equal sides have equal angles opposite to them) From (3) and (4),

 $\angle OBA = 34^{\circ}$(5) $\therefore \ \angle AOB + \angle OBA + \angle OAB = 180^{\circ}$ (Sum of all angles in a triangle is 180°) ∠AOB+34°+34°=180° [using (3) and (5)] ⇒ $\Rightarrow \angle AOB + 68^\circ = 180^\circ$ \Rightarrow $\angle AOB = 180^{\circ} - 68^{\circ} \Rightarrow \angle AOB = 112^{\circ}$ Hence, $\angle AOB = 112^\circ$, $\angle OAB = 34^\circ$ and $\angle OBA = 34^{\circ}$ (c) Here ABCD is a rhombus and diagonals intersect at O. and $\angle OAB : \angle OBA = 3:2$ Let $\angle OAB = 2x^{\circ}$ then $\angle OBA = 2x^{\circ}$ We know that diagonals of rhombus intersect at right angles. $\therefore \angle OAB = 90^{\circ} \text{ in } \triangle AOB$ $\therefore \angle OAB + \angle OBA = 180^{\circ}$ $\Rightarrow 90^\circ + 3x^\circ + 2x^\circ = 180^\circ \Rightarrow 90^\circ + 5x^\circ = 180^\circ$ $\Rightarrow 5x^{\circ} = 180^{\circ} - 90^{\circ} \Rightarrow x^{\circ} = \frac{90^{\circ}}{5}$ $\Rightarrow x^{\circ} = 18^{\circ}$ $\therefore \angle OAB = 3x^\circ = 3 \times 18^\circ = 54^\circ$ $\angle OBA = 2x^\circ = 2 \times 18^\circ = 36^\circ$

and $\angle AOB = 90^{\circ}$

Question 8.

(a) In figure (1) given below, ABCD is a trapezium. Find the values of x and y.(b) In figure (2) given below, ABCD is an isosceles trapezium. Find the values of x and.y.

(c) In figure (3) given below, ABCD is a kite and diagonals intersect at O. If \angle DAB = 112° and \angle DCB = 64°, find \angle ODC and \angle OBA.

(a) Given : ABCD is a trapezium $\angle A = x + 20^\circ$, $\angle B = y$, $\angle C = 92^\circ$, $\angle D = 2x + 10^\circ$ Required : Value of x and y. Since ABCD is a trapezium. Sol. $\angle B + \angle C = 180^{\circ}$ - (:: AB || DC) $\Rightarrow v + 92^\circ = 180^\circ$ \Rightarrow $y = 180^{\circ} - 92^{\circ} \Rightarrow$ $y = 88^{\circ}$ Also, $\angle A + \angle D = 180^{\circ}$ $\Rightarrow x + 20^\circ + 2x + 10^\circ = 180^\circ$ \Rightarrow 3x + 30° = 180° \Rightarrow 3x = 180° - 30° \Rightarrow 3x = 150° $\Rightarrow x = \frac{150^{\circ}}{3} \Rightarrow x = 50^{\circ}$ Hence, value of $x = 50^{\circ}$ and $y = 88^{\circ}$ (b) Given : ABCD is an isosceles trapezium BC = AD $\angle A = 2x, \angle C = y, \angle D = 3x$ Required : Value of x and y. Sol. Since ABCD is a trapezium and AB || DC $\therefore \ \angle A + \angle D = 180^{\circ}$ $\Rightarrow 2x + 3x = 180^{\circ}$ \Rightarrow 5x = 180° $\Rightarrow x = \frac{180^\circ}{5} = 36^\circ$ *.*. . $x = 36^{\circ}$(1) Also, AB = BC and AB || DC $\Rightarrow 2 \times 36^{\circ} + y = 180^{\circ}$ [substituting the value of x from (1)]. \Rightarrow 72° + y = 180° \Rightarrow y = 180° - 72° $\Rightarrow v = 108^{\circ}$

Hence, value of $x = 72^{\circ}$ and $y = 108^{\circ}$

(c) Given : ABCD is a kite and diagonals intersect at O.

 $\angle DAB = 112^{\circ}$ and $\angle DCB = 64^{\circ}$

Required : ∠ODC and ∠OBA

Sol.: : AC diagonal of kite ABCD

$$\therefore \ \angle DOC = \frac{64}{2}^\circ = 32^\circ$$

 $\therefore \angle DOC = 90^{\circ}$

(diagonal of kites bisect at right angles)

In ∠OCD,

:. $\angle ODC = 180^{\circ} - (\angle DCO + \angle DOC)$ = $180^{\circ} - (32^{\circ} + 90^{\circ}) = 180^{\circ} - 122^{\circ} = 58^{\circ}$ In $\triangle DAB$,

$$\angle OAB = \frac{112^\circ}{2} = 56^\circ$$

∠OAB = 90°

(diagonals of kites bisect at right angles)

In ∆OAB

 $\angle OBA = 180^{\circ} - (\angle OAB + \angle AOB)$ = $180^{\circ} - (56^{\circ} + 90^{\circ}) = 180^{\circ} - 146^{\circ} = 34^{\circ}$ Hence, $\angle ODC = 58^{\circ}$ and $\angle OBA = 34^{\circ}$

Question 9.

(i) Prove that each angle of a rectangle is 90°.

(ii) If the angle of a quadrilateral are equal, prove that it is a rectangle.

(iii) If the diagonals of a rhombus are equal, prove that it is a square.

(iv) Prove that every diagonal of a rhombus bisects the angles at the vertices. Solution:

٩,

To prove : Each angle of rectangle = 90° **Proof :** \therefore Opposite angles of a rectangle are equal

$$\therefore \angle A = \angle C \text{ and } \angle B = \angle D$$

But $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$
(Sum of angles of a quadrilateral)
$$\Rightarrow \angle A + \angle B + \angle A + \angle B = 360^{\circ}$$
$$\Rightarrow 2(\angle A + \angle B) = 360^{\circ}$$
$$\Rightarrow \angle A + \angle B = \frac{360^{\circ}}{2} = 180^{\circ}$$

But
$$\angle A + \angle B$$
 (Angles of a rectangle)

- $\therefore \angle A = \angle B = 90^{\circ}$ Hence $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$
- (*ii*) Given : In quadrilateral ABCD, $\angle A = \angle B = \angle C = \angle D$

To prove : ABCD is a rectangle

Proof: $\angle A = \angle B = \angle C = \angle D$

$$\Rightarrow \angle A = \angle C$$
 and $\angle B = \angle D$

But these are opposite angles of the quadrilateral

: ABCD is a parallelogram

$$\therefore \angle A = \angle B = \angle C = \angle D = 90^{\circ}$$

Hence ABCD is a rectangle

Hence proved.

,

To Prove : ABCD is a square.

Proof: In $\triangle ABC$ and $\triangle DCB$, AB = DC(ABCD is a rhombus) BC = BC(common) and AC = BD(given) $\therefore \Delta ABC \cong \Delta DCB$ (By S.S.S. axiom of congruency) $\therefore \angle ABC = \angle DBC$ (c.p.c.t.) But these are angle made by transversal BC on the same side of parallel Lines AB and CD *.*.. $\angle ABC + \angle DBC = 180^{\circ}$ $\angle ABC = 90^{\circ}$: ABCD is a square (Q.E.D.) (iv) AC and BD bisects $\angle A$, $\angle C$ and $\angle B$, $\angle D$ respectively. Proof: Statements Reasons (1) In $\triangle AOD$ and $\triangle COD$ (each side or rhombus AD = CDis same) OD = OD(common) AO = OC(diagonal of rhombus bisect each other) (2) $\triangle AOD \cong \triangle COD$ [S.S.S.] (3) $\angle AOD = \angle COD$ [c.p.c.t.] (4) $\angle AOD + \angle COD = 180^{\circ}$ AOC is a st. line $\Rightarrow \angle AOD + \angle COD = 180^{\circ} By(3)$ $\Rightarrow \angle AOD = \frac{180^{\circ}}{2}$ 2 ∠AOD = 180° ⇒

 $\Rightarrow \angle AOD = 90^{\circ}$ (5) $\angle COD = 90^{\circ}$ By (3) and (4) $\therefore OD \perp AC \Rightarrow BD \perp AC$ (6) $\angle ADO = \angle CDO$ (c.p.c.t.) $\Rightarrow OD \text{ bisect } \angle D \Rightarrow BD \text{ bisect } \angle D$ Similarly we can prove that BD bisect $\angle B$.
and AC bisect the $\angle A$ and $\angle C$.

Question 10. ABCD is a parallelogram. If the diagonal AC bisects $\angle A$, then prove that: (i) AC bisects $\angle C$ (ii) ABCD is a rhombus (iii) AC \perp BD.

Solution:

Given : In parallelogram ABCD, diagonal AC bisects $\angle A$

To prove : (i) AC bisects $\angle C$

(ii) ABCD is a rhombus

(*iii*) AC \perp BD

Proof: $(i) :: AB \parallel CD$ (opposite sides of a $\parallel gm$)

 $\therefore \angle DCA = \angle CAB$ (Alternate angles)

Similarly $\angle DAC = \angle DCB$

But $\angle CAB = \angle DAC$ (:: AC bisects $\angle A$)

- ∴ ∠DCA = ∠ACB
- \therefore AC bisects $\angle C$
- (*iii*) \because AC bisects $\angle A$ and $\angle C$

and $\angle A = \angle C$

- : ABCD is a rhombus
- (iii) : AC and BD are the diagonals of a rhombus
- ... AC and BD bisect each other at right angles Hence AC \perp BD

Hence proved.

Question 11.

(i) Prove that bisectors of any two adjacent angles of a parallelogram are at right angles.

(ii) Prove that bisectors of any two opposite angles of a parallelogram are parallel.

(iii) If the diagonals of a quadrilateral are equal and bisect each other at right

angles, then prove that it is a square. Solution:

(i) Given AM bisect angle A and BM bisects angle B of || gm ABCD

To Prove : $\angle AMB = 90^{\circ}$.

Proof :

Statements

Reasons

(1) $\angle A + \angle B = 180^{\circ}$	AD BC and AB is the transversal.	
(2) $\frac{1}{2} (\angle A + \angle B) = \frac{180^{\circ}}{2}$	Multiplying both sides by $\frac{1}{2}$	
$\Rightarrow \frac{1}{2} \angle A + \frac{1}{2} \angle B = 90^{\circ}$		
$\Rightarrow \angle MAB + \angle MBA = 90^{\circ}$ (i) AM bisects $\angle A$		
($\frac{1}{2} \angle A = \angle MAB$ <i>ii</i>) BM bisects $\angle B$ $\frac{1}{2} \angle B = \angle MBA$	
(2) In A AMD		

(3) In \triangle AMB,

- $\angle AMB + \angle MAB$ $+ \angle MBA = 180^{\circ}$ $\Rightarrow \angle AMB + (\angle MAB$ $+ \angle MAB) = 180^{\circ}$ (4) $\angle AMB + 90^{\circ} = 180^{\circ}$ From (2) and (3)
- $\Rightarrow \angle AMB = 180^{\circ} 90^{\circ}$
- $\Rightarrow \angle AMB = 90^{\circ} \qquad (Q.E.D.)$

(*ii*) Given : a \parallel gm ABCD in which bisector AR of $\angle A$ meets DC in R and bisector CQ of $\angle C$ meets AB in Q.

Proof:

Reasons ~

(1) In || gm ABCD $\angle A = \angle C$ opposite angles of || gm are equal. $\Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$ multiplying both sides $by \frac{1}{2}$. $\Rightarrow \angle DAR = \angle BCQ$ (i) AR is bisector of $\frac{1}{2} \angle A = \angle DAR$ (ii) CQ is bisector of $\frac{1}{2} \angle C = \angle BCQ$

(2) In $\triangle ADR$ and $\triangle CBQ$

Statements

$\angle DAR = \angle BCQ$ AD = BC	Proved in (1) opposite sides of gm ABCD are equal.	
$\angle D = \angle B$	opposite sides of gm ABCD are equal.	
$\therefore \Delta ADR \cong \Delta CBQ$	[By A.S.A. axiom of congruency]	
∴ ∠DRA = ∠BCQ	[c.p.c.t.]	
(3) ∠DRA = ∠RAQ	Alternate angles	
[DC	AB, :: ABCD is a gm]	
(4) ∠RAQ = ∠BCQ	From (2) and (3)	
But these are corresponding angles		
∴ AR CQ	(Q.E.D.)	
(<i>iii</i>) Given : In quadrilateral ABCD, diagonals AC and BD are equal and bisect each other at right		

angles

To prove : ABCD is a square

-

Proof : In $\triangle AOB$ and $\triangle COD$

AO = OC	(given)	
BO = OD	(given)	

 $\angle AOB = \angle COD$ (vertically opposite angles)

- $\therefore \Delta AOB \cong \Delta COD$ (SAS axiom)
- $\therefore AB = CD$

and $\angle OAB = \angle OCD$

But these are alternate angles

- ∴ AB∥CD
- : ABCD is a parallelogram
- ... In a parallelogram, the diagonal bisect each other and are equal
- ∴ ABCD is a square

Question 12.

(i) If ABCD is a rectangle in which the diagonal BD bisect $\angle B$, then show that ABCD is a square.

(ii) Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:

(i) ABCD is a rectangle and its diagonals AC bisects $\angle A$ and $\angle C$

To prove : ABCD is a square Proof : · · Opposite sides of a rectangle are equal and each angle is 90°

- \therefore AC bisects $\angle A$ and $\angle C$
- $\therefore \ \ \angle 1 = \angle 2 \text{ and } \ \ \angle 3 = \angle 4$ But $\angle A = \angle C = 90^{\circ}$
- $\therefore AB = BC (Opposite sides of equal angles)$ But AB = CD and BC = AD .
- $\therefore AB = BC = CD = DA$
- .: ABCD is a square
- (ii) In quadrilateral ABCD diagonals AC and BD are equal and bisect each other at right angle
 To prove : ABCD is a square

```
Proof: In \triangle AOB and \triangle BOC
```

AO=CO

(Diagonals bisect each other at right angle)

Question 13.

P and Q are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. Show that PQ is bisected at O. Solution:

ABCD is a parallelogram P and Q are the points on AB and DC. Diagonals AC and BD intersect each other at O.

To prove : OP = OQ Proof : ·· Diagonals of ||gm ABCD bisect each other at O

 $\therefore AO = OC \text{ and } BO = OD$ Now in $\triangle AOP$ and $\triangle COQ$ AO = OC $\angle OAP = \angle OCQ$ $\angle AOP = \angle COQ$ (Alternate angles) $\angle AOP = \angle COQ$

(Vertically opposite angles)

- ∴ ∆AOP≅∆COQ
- ∴ OP=OQ Hence O bisects PQ

Question 14.

(a) In figure (1) given below, ABCD is a parallelogram and X is mid-point of BC. The line AX produced meets DC produced at Q. The parallelogram ABPQ is completed. Prove that:

(SAS axiom)

(i) the triangles ABX and QCX are congruent;

(ii)DC = CQ = QP

(b) In figure (2) given below, points P and Q have been taken on opposite sides AB and CD respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other.

Solution:

(a) Given : ABCD is a parallelogram and X is mid-point of BC. The line AX produced meets DC produced at Q and ABPQ is a || gm.

BX = XC X is the mid-point of BC

vertically opposite angles $\angle AXB = \angle CXQ$ ∠XCQ = ∠XBA Alternate angle $(:: AB \parallel CQ)$ $\therefore \Delta ABX \cong \Delta QCX [A.S.A.]$ (2) \therefore CQ = AB [c.p.c.t.] ABCD is a || gm (3) AB = DCABPQ is a || gm (4) AB = QPFrom (2), (3) and (4) (5) DC = CQ = QP(Q.E.D.) (b) In ||gm ABCD, P and Q are points on AB and CD respectively PQ and AC intersect each other at O and AP = CQ ... To prove : AC and PQ bisect each other *i.e.*, AO = OC, PO = OQ**Proof** : In $\triangle AOP$ and $\triangle COQ$ (Given) AP = CQ $\angle AOP = \angle COQ$ (Vertically opposite angles) $\angle OAP = \angle OCQ$ (Alternate angles) (AAS axiom) $\therefore \Delta AOP \cong \Delta COQ$ $\therefore OP = OQ$ (c.p.c.t.) (c.p.c.t.) and OA = OCHence AC and PQ bisect each other.

Question 15.

ABCD is a square. A is joined to a point P on BC and D is joined to a point Q on AB. If AP=DQ, prove that AP and DQ are perpendicular to each other. Solution:

Given : ABCD is a square. P is any point on BC and Q is any point on AB and these points are taken such that AP = DQ.

To Prove : AP \perp DQ. Proof: Statements Reasons (1) In $\triangle ABP$ and $\triangle ADQ$ AP = DQgiven ABCD is a square AD = ABABCD is a square $\angle DAQ = \angle ABP$ and each 90° [R.H.S. axiom of $\therefore \Delta ABP \cong \Delta ADQ$ congruency] $\therefore \angle BAP = \angle ADQ$ each angle of (2) But $\angle BAD = 90^{\circ}$ square is 90° (3) $\angle BAD = \angle BAP + \angle PAD$ From (2) $90^{\circ} = \angle BAP + \angle PAD$ $\Rightarrow \angle BAP + \angle PAD = 90^{\circ}$ $\Rightarrow \angle PAD + \angle ADQ = 90^{\circ}$ From (1) (4) In $\triangle ADM$, Sum of all angles \angle MAD + \angle ADM + ∠AMD = 180° in a triangle is 180° From (3) \Rightarrow 90° + \angle AMD = 180° $\angle AMD = 180^\circ - 90^\circ$ ⇒' ⇒ $\angle AMD = 90^{\circ}$ $DM \perp AP$ *.*... \Rightarrow DQ \perp AP Hence, AP \perp DQ (Q.E.D.)

Question 16.

If P and Q are points of trisection of the diagonal BD of a parallelogram ABCD, prove that CQ || AP.

Solution:

Given : ABCD is a \parallel gm in which BP = PQ = QD To Prove : CQ \parallel AP

Question 17.

A transversal cuts two parallel lines at A and B. The two interior angles at A are bisected and so are the two interior angles at B ; the four bisectors form a quadrilateral ABCD. Prove that

(i) ABCD is a rectangle.

(ii) CD is parallel to the original parallel lines.

Solution:

Given : LM || PQ AB transversal line cut $\angle M$ at A and PQ at B.

AC, AD, BC and BD is the bisector of $\angle LAB$,

 \angle BAM, \angle PAB and \angle ABQ respectively.

AC and BC intersect at C and AD and BD intersect at D. A quadrilateral ABCD is formed.

To Prove : (i) ABCD is a rectangle

(ii) CD || LM and PQ

Proof :

Statements	Reasons

(1) $\angle LAB^+ \angle BAM^= 180^\circ$ LAM is a st. line

$$\Rightarrow \frac{1}{2} (\angle LAB + \angle BAM) \text{ Multiplying both}$$

$$= 90^{\circ} \qquad \text{sides by } \frac{1}{2} .$$

$$\Rightarrow \frac{1}{2} \angle LAB + \frac{1}{2} \angle BAM$$

$$= 90^{\circ}$$

$$\Rightarrow \angle 2 + \angle 3 = 90^{\circ} \qquad AC \& AD \text{ is bisector} \\ \text{of } \angle LAB \& \angle BAM \\ \text{respectively.} \\ \therefore \frac{1}{2} \angle LAB = \angle 2 \\ \text{and } \frac{1}{2} \angle LAB = \angle 2 \\ \text{and } \frac{1}{2} \angle LAB = \angle 3 \\ \end{cases}$$

$$\Rightarrow \angle CAD = 90^{\circ}$$

$$\Rightarrow \angle A = 90^{\circ}$$
(2) Similarly, $\angle PBA + PBQ \text{ is a st. line} \\ \angle QBA = 180^{\circ} \\ \Rightarrow \frac{1}{2} \angle PBA + \frac{1}{2} \angle QBA \text{ Multiplying both} \\ \text{sides by } \frac{1}{2} \\ \Rightarrow \angle 6 + \angle 7 = 90^{\circ} \\ \therefore BC \text{ and } BD \text{ is bisector of } \angle PBA \text{ and} \\ \angle QBA \text{ respectively.} \\ \frac{1}{2} \angle PBA = \angle 6 \\ \frac{1}{2} \angle QBA = \angle 7 \\ \end{bmatrix}$

∠CBD = 90° ⇒ ∠B = 90° ⇒ $\begin{array}{rcl} \text{(3)} & \therefore & \angle \text{LAB} + \angle \text{ABP} \\ & = 180^{\circ} \end{array}$ Sum of co-interior angles is 180° [LM || PQ given] $\frac{1}{2}$ $\angle LAB + \frac{1}{2} \angle ABP$ Multiplying both sides by $\frac{1}{2}$ = 90° $\angle 2 + \angle 6 = 90^{\circ}$: AC and BC is bisector of ∠LAB and ∠PBA respectively. $\therefore \frac{1}{2} \angle LAB = \angle 2$ and $\frac{1}{2} \angle APB = \angle 6$

(4) $\ln \Delta ACB$ $\angle 2 + \angle 6 + \angle C = 180^{\circ}$ Sum of all angles in a triangle is 180° $\Rightarrow (\angle 2 + \angle 6) + \angle C = 180^{\circ}$ $\Rightarrow 90^{\circ} + \angle C = 180^{\circ}$ using (6) $\Rightarrow \angle C = 90^{\circ}$ Sum of co-interior (5) $\therefore \angle MAB + \angle ABQ$ = 180° angles is 180° [(LM || PQ) given] $\Rightarrow \frac{1}{2} \angle MAB + \frac{1}{2} \angle ABQ$ Multiplying both $=\frac{180^{\circ}}{2}$ sides by $\frac{1}{2}$. $\Rightarrow \angle 3 + \angle 7 = 90^{\circ}.$: AD and BD bisect the ∠MAB and ∠ABQ $\therefore \frac{1}{2} \angle MAB = \angle 3$ and $\frac{1}{2} \angle ABQ = \angle 7$ (6) In \triangle ADB,

- $\therefore \ \angle 3 + \angle 7 + \angle D = 180^{\circ} \qquad \text{Sum of all angles} \\ \text{in a triangle is } 180^{\circ} \\ \Rightarrow \quad (\angle 3 + \angle 7) + \angle D = 180^{\circ} \\ \Rightarrow \quad 90^{\circ} + \angle D = 180^{\circ} \qquad \text{From (5)} \\ \Rightarrow \quad \angle D = 180^{\circ} 90^{\circ} \\ \end{cases}$
- $\Rightarrow \angle D = 90^{\circ}$

(7)
$$\angle LAB + \angle BAM$$
 From (1) and (3)
 $= \angle BAM = \angle ABP$
 $\Rightarrow \frac{1}{2} \angle BAM = \frac{1}{2} \angle ABP$ Multiplying both
sides by $\frac{1}{2}$
 $\Rightarrow \angle 3 = \angle 6$ \therefore AD and BC is
bisector of $\angle BAM \& \angle ABP$ respectively.
 $\therefore \frac{1}{2} \angle BAM = \angle 3$
and $\frac{1}{2} \angle ABP = \angle 6$

Similarly $\angle 2 = \angle 7$ (8) In $\triangle ABC$ and $\triangle ABD$ From (7) ∠2 = ∠7 AB = ABcommon ∠6 = ∠3 From (7) $\therefore \Delta ABC \cong \Delta ABD$ [By A.S.A. axiom of congruency] $\therefore AC = DB$ [c.p.c.t.] Also CB = AD[c.p.c.t.] (9) $\angle A = \angle B = \angle C = \angle D$ From (1), (2), (4) = 90° and (6) AC = DBProved in (8) Proved in (8) CB = AD: ABCD is a rectangle. From (9) (10) :: ABCD is a rectangle Diagonals of rectangle OA = ODbisect each other. (11) In ∆AOD OA = ODFrom (10) Angles opposite to ∴ ∠9 = ∠3 equal sides are equal. AD bisects ∠MAB (12) ∠3 = ∠4 From (11) and (12) $(13) \angle 9 = \angle 4$ But these are alternate angles. OD || LM *.*.. ⇒ CD || LM Similarly we can prove that ∠10 = ∠8 But these are alternate angles. *.*.. OD || PQ \Rightarrow CD || PQ. (14) CD || LM Proved in (13) CD || PQ Proved in (19) (Q.E.D.)

Question 18.

In a parallelogram ABCD, the bisector of $\angle A$ meets DC in E and AB = 2 AD. Prove that

(i) BE bisects ∠B

(ii) $\angle AEB = a right angle.$

Solution:

Given : ABCD is a \parallel gm in which bisectors of angle A and B meets in E and AB = 2 AD.

 $\therefore DE = EC$

(6) AD = BC	opposite sides of
(7) DF $-$ DC	gm are equal.
(7) DE = BC	From (4) and (6)
(8) EC = BC	From (5) and (7)
(9) In $\triangle BCE$	
EC = BC	Proved in (8)
∴ ∠6 = ∠5	Angles opposite
•	equal sides are equal
(10) AB DC	-
and BE is the transvers	sal
∴ ∠4 = ∠5	Alternate angles.
(11) ∠4 = ∠6	From (9) and (10)
\therefore BE is bisector of $\angle B$	
(12) ∠A + ∠B = 180°	Sum of co-interior
	angles is equal to
	180° (AD BC)
1 1 180°	
$\frac{1}{2} \angle A + \frac{1}{2} \angle B = \frac{180^\circ}{2}$	- Multiplying both
	sides by $\frac{1}{2}$
$\angle 2 + \angle 4 = 90^{\circ}$	AE is bisector of
	$\angle A$ and BE is
	bisector of $\angle B$.
(13) In $\triangle APB$,	
$\angle AEB + \angle 2 + \angle 4 = 180$) °
$\Rightarrow \angle AEB + 90^\circ = 180^\circ$	From (12)
\rightarrow $\angle AFB = 180^\circ - 90^\circ$	

- $\Rightarrow \angle AEB = 180^{\circ} 90^{\circ}$
- $\Rightarrow \angle AEB = 90^{\circ}$

(Q.E.D.)

Question 19.

ABCD is a parallelogram, bisectors of angles A and B meet at E which lie on DC. Prove that AB Solution:

Given : ABCD is a para	nelogram in which disector
of $\angle A$ and $\angle B$ meets I	DC in E
To Prove : $AB = 2 AD$	
Proof:	-
Statements	Reasons
(1) In parallelogram ABC	CD
AB DC	
∠1 = ∠5	Alternate angles
	(∵AE is transversal)
(2) ∠1 = ∠2	AE is bisector of
•	∠A (given)
(3) ∠2 = ∠5	From (1) and (2)
In $\triangle AED$,	equal angles have
DE = AD	equal sides oppo-
	-site to them.
(4) ∠3 = ∠6	Alternate angles
(5) ∠3 = ∠4	$[:: BE is bisector of \angle B$
	(given)]

(6) ∠4 = ∠6	From (4) and (5)
In $\triangle BCE$	
BC = EC	equal angles have
	equal sides oppo-
	site to them.
(7) $AD = BC$	opposite sides of
	gm are equal.
(8) $AD = DE = EC$	From (3), (6) and (7)
(9) AB = DC	opposite sides of
	gm are equal.
AB = DE + EC	
AB = AD + AD	From (8)
AB = 2 AD	
	(O E.)

(Q.E.D.)

Question 20.

ABCD is a square and the diagonals intersect at O. If P is a point on AB such that AO =AP, prove that $3 \angle POB = \angle AOP$. Solution:

Given : ABCD is a square and the diagonals intersect at O. P is a point on AB such that AO = AP.To Prove : $3 \angle POB = \angle AOP$ Proof: Reasons Statements (1) In square ABCD AC In square diagonals isadiagonal ∴ ∠CAB =45° make 45° with side: $\Rightarrow \angle OAP = 45^{\circ}$ (2) In $\triangle AOP$ $\angle OAP = 45^{\circ}$ From (1) equal side have a AO = APequal angles opposite to them. ----- $\therefore \angle AOP + \angle APO + \angle OAP$ Sum of all angles in = 180° a triangle is 180° $\angle AOP + \angle AOP + 45^{\circ}$ = 180° $2 \angle AOP = 180^{\circ} - 45^{\circ}$ 2 ∠AOP = 135°

$$\angle AOP = \frac{135^{\circ}}{2}$$
(3) $\angle AOB = 90^{\circ}$ In square ABCD
diagonals bisect at
right angles.

$$\Rightarrow \angle AOP + \angle POB = 90^{\circ}$$

$$\Rightarrow \frac{135^{\circ}}{2} + \angle POB = 90^{\circ} \quad \text{From (2)}$$

$$\Rightarrow \angle POB = 90^{\circ} - \frac{135^{\circ}}{2}$$

$$\Rightarrow \angle POB = \frac{180^{\circ} - 135^{\circ}}{2}$$

$$\Rightarrow \angle POB = \frac{45^{\circ}}{2}$$

$$3 \angle POB = \frac{135^{\circ}}{2} \quad \text{Multiplying both}$$
sides by 3,
(4) $\angle AOP = 3 \angle POB \quad \text{From (2) and (3)}$
(Q.E.D.)

Question 21.

ABCD is a square. E, F, G and H are points on the sides AB, BC, CD and DA respectively such that AE = BF = CG = DH. Prove that EFGH is a square. Solution:

Hence proved.

Question 22.

(a) In the Figure (1) given below, ABCD and ABEF are parallelograms. Prove that (i) CDFE is a parallelogram (ii) FD = EC (iii) \triangle AFD = \triangle BEC. (b) In the figure (2) given below, ABCD is a parallelogram, ADEF and AGHB are two squares. Prove that FG = AC Solution:

(a) Given : ABCD and ABEF are || gms To Prove :(i) CDEF is || gm

(ii) FD = EC

(*iii*) $\triangle AFD \cong \triangle BEC$

Proof:

Statements

Reasons

ABCD is a || gm

(I) DC AB and DC = AB	
(2) FE AB and FE = AB	
(3) DC FE and DC = FE	
∴ CDFE is a gm	

ABEF is a || gm -From (1) and (2) If a pair of opposite sides of a quadrilateral are parallel and equal

It is a || gm. (4) CDFE is a || gm FD = EC(5) In $\triangle AFD$ and $\triangle BEC$ AD = BCAF = BE

opposite sides of || gm CDFE are equal. opposite sides || gm ABCD are equal. opposite sides of ||gm ABEF are equal. FD = EC

From (4)

 $\therefore \Delta AFD \cong \Delta BEC$

[By S.S.S. axiom of congruency] (Q.E.D.)

(b) Given : ABCD is a || gm, ADEF and AGHB are two squares.

To Prove : FG = AC Proof: Statements Reasons (1) $\angle FAG + 90^{\circ} + 90^{\circ} +$ At a point total $\angle BAD = 36^{\circ}$ angle is 360° $\Rightarrow \angle FAG = 36^{\circ} - 90^{\circ} - 90^{\circ}$ -∠BAD $\Rightarrow \angle FAG = 180^\circ - \angle BAD \ ABCD \ is a \parallel gm$ (2) $\angle B + \angle BAD = 180^{\circ}$ Sum of adjacent angle in ||gm is equal to 180° $\Rightarrow \angle B = 180^{\circ} - \angle BAD$ (3) $\angle FAG = \angle B$ From (1) and (3) (4) In $\triangle AFG$ and $\triangle ABC$ FA DE and ABCD AF = BCboth are square on the same base DA. Similarly AG = AB $\angle FAG = \angle B$ From (3) $\therefore \Delta AFG \cong \Delta ABC$ [By S.A.S. axiom of congruency] \therefore FG = AC [c.p.c.t.] (Q.E.D.)

Question 23.

ABCD is a rhombus in which $\angle A = 60^\circ$. Find the ratio AC : BD. Solution:

Let each side of the rhombus ABCD = a $\therefore \angle A = 60^{\circ}$

:. AABD is an equilateral triangle

...

BD = AB = a

. The diagonals of a rhombus bisect each other at right angles,

$$\therefore \text{ In right } \Delta \text{ AOB,}$$
$$AO^2 + OB^2 = AB^2$$

$$\Rightarrow AO^{2} = AB^{2} - OB^{2} = a^{2} - \left(\frac{1}{2}a\right)^{2}$$
$$= a^{2} - \frac{a^{2}}{4} = \frac{3}{4}a^{2}$$
$$\therefore \qquad AO = \sqrt{\frac{3}{4}a^{2}} = \frac{\sqrt{3}}{2}a$$

:..

But

$$AC = 2 AO = 2 \times \frac{\sqrt{3}}{2}a = \sqrt{3} a$$

Now AC : BD = $\sqrt{3} \ a : a = \sqrt{3} : 1$.

Exercise 13.2

Question 1.

Using ruler and compasses only, construct the quadrilateral ABCD in which ∠ BAD = 45° , AD = AB = 6cm, BC = 3.6cm, CD = 5cm. Measure \angle BCD. Solution:

(i) draw a line segment AB = 6cm

(ii) At A, draw a ray AX making an angle of 45° and cut off AD = 6cm

(iii) With centre B and radius 3.6cm, and

with centre D and radius 5cm, draw two arcs intersecting each other at C.

(iv) Join BC and DC,

ABCD is the required quadrilateral.

On measuring \angle BCD, it is 60°.

Question 2.

Draw a quadrilateral ABCD with AB = 6cm, BC = 4cm, CD = 4 cm and \angle ABC = \angle BCD = 90°

Solution: Steps of construction :

(i) Draw a line segment BC = 4cm.

(ii) At B and C draw rays BX and CY making an angle of 90° each

- (iii) From BX, cut off BA = 6cm and from
- CY, cut off CD = 4cm

(iv) Join AD,

ABCD is the required quadrilateral

Question 3.

Using ruler and compasses only, construct the quadrilateral ABCD given that AB = 5 cm, BC = 2.5 cm, CD = 6 cm, \angle BAD = 90° and the diagonal AC = 5.5 cm. Solution:

(i) Draw a line segment AB = 5cm.

(ii) With centre A and radius 5.5 cm and with centre B and radius 2.5 cm draw arcs which intersect each other at C.

(iii) Join AC and BC.

(iv) at A, draw a ray AX making an angle of 90°.

(v) With centre C and radius 6cm, draw an arc intersecting AX at D

(v) Join CD

ABCD is the required quadrilateral.

Question 4.

Construct a quadrilateral ABCD in which AB = 3.3 cm, BC = 4.9 cm, CD = 5.8 cm, DA = 4 cm and BD = 5.3 cm. Solution:

(i) Draw a line segment AB = 3.3 cm (ii) With centre A and radius 4 cm, and with centre B and radius 5.3 cm, draw ares intersecting each other at D.

⁽iii) Join AD and BD.

(iv) With centre B and radius 4.9 cm and with centre D and radius 5.8cm, draw arcs intersecting each other at C.

(v) Join BC and DC.

ABCD is the required quadrilateral.

Question 5.

Construct a trapezium ABCD in which AD || BC, AB = CD = 3 cm, BC = 5.2cm and AD = 4 cm

Steps of construction :

(i) Draw a line segment BC = 5.2cm

(ii) From BC, cut off BE = AD = 4cm

(iii) With centre E and C, and radius 3 cm, draw area intersecting each other at D

draw arcs intersecting each other at D.

(iv) Join ED and CD.

(v) With centre D and radius 4cm and with centre B and radius 3 cm, draw arcs intersecting each other at A.

(vi) Join BA and DA.

ABCD is the required trapezium.

Question 6.

Construct a trapezium ABCD in which AD || BC, $\angle B$ = 60°, AB = 5 cm. BC = 6.2 cm and CD = 4.8 cm. Solution:

- (i) Draw a line segment BC = 6.2 cm.
- (ii) At B, draw a ray BX making an angle of
- 60° and cut off AB = 5cm.

(iii) From A, draw a line AY parallel to BC.

(iv) With centre C and radius 4.8cm, draw an arc which intersects AY at D and D'.(v) Join CD and CD'

Then ABCD and ABCD' are the required two trapezium.

Question 7.

Using ruler and compasses only, construct a parallelogram ABCD with AB = 5.1 cm, BC = 7 cm and $\angle ABC = 75^{\circ}$.

Steps of construction.

(i) Draw a line segment BC = 7 cm.

(ii) A to B, draw a ray Bx making an angle of 75° and cut off AB = 5.1 cm.

(iii) With centre A and radius 7 cm with centre C and radius 5.1 cm, draw arcs intersecting each other at D.

(iv) Join AD and CD.

ABCD is the required parallelogram.

Question 8.

Using ruler and compasses only, construct a parallelogram ABCD in which AB = 4.6 cm, BC = 3.2 cm and AC = 6.1 cm.

(i) Draw a line segment AB = 4.6 cm (ii) With centre A and raduis 6.1 cm and with centre B and raduis 3.2 cm, draw arcs intersecting each other at C.

(iii) Join AC and BC.

(iv) Again with centre A and raduis 3.2 cm and with centre C and raduis 4.6 cm, draw

arcs intersecting each other at D.

(v) Join AD and CD.

Then ABCD is the required parallelogram.

Question 9.

Using ruler and compasses, construct a parallelogram ABCD give that AB = 4 cm, AC = 10 cm, BD = 6 cm. Measure BC.

Given : AB = 4 cm, AC = 10 cm, BD = 6 cm**Required :** (*i*) To construct a parallelogram ABCD. (*ii*) Length of BC.

Steps of Construction :

1. Construct triangle OAB such that

$$OA = \frac{1}{2} \times AC = \frac{1}{2} \times 10 \text{ cm} = 5 \text{ cm}$$

 $OB = \frac{1}{2} \times BD = \frac{1}{2} \times 6 \text{ cm} = 3 \text{ cm}$

(Since diagonals of || gm bisect each other) and AB

= 4 cm.

2. Produce AO to C such that OA = OC = 5 cm

3. Produce BO to D such that OB = OD = 3 cm

- 4. Join AD, BC, and CD.
- 5. ABCD is the required parallelogram.
- 6. Measure BC which is equal to 7.2 cm.

Question 10.

Using ruler and compasses only, construct a parallelogram ABCD such that BC = 4 cm, diagonal AC = 8.6 cm and diagonal BD = 4.4 cm. Measure the side AB.

Given : BC = 4 cm, diagonal AC = 8.6 cm and diagonal BP = 4.4 cm **Required :** (*i*) To construct a parallelogram

(ii) Measurement the side AB.

Steps of Construction :

1. Construct triangle OBC such that

$$OB = \frac{1}{2} \times BD = \frac{1}{2} \times 4.4 \text{ cm} = 2.2 \text{ cm}$$
$$OC = \frac{1}{2} \times AC = \frac{1}{2} \times 8.6 \text{ cm} = 4.3 \text{ cm}$$

(Since diagonals of || gm bisect each other) and BC = 4 cm

2. Produce BO to D such that BO = OD = 2.2 cm

3. Produce CO to A such that CO = OA = 4.3 cm

- 4. Join AB, AD and CD
- 5. ABCD is the required parallelogram
- 6. Measure the side AB, AB = 5.6 cm

Question 11.

Use ruler and compasses to construct a parallelogram with diagonals 6 cm and 8 cm in length having given the acute angle between them is 60°. Measure one of the longer sides.

Solution:

Given : Diagonal AC = 6 cm. Diagonal BD = 8 cm Angle between the diagonals = 60° **Required :** (*i*) To construct a parallelogram. (*ii*) To measure one of longer side.

Steps of Construction :

1. Draw AC = 6 cm.

2. Find the mid-point O of AC.

(... Diagonals of || gm bisect each other)

3. Draw line POQ such that $\angle POC = 60^{\circ}$ and

 $OB = OD = \frac{1}{2} BD = \frac{1}{2} \times 8 cm = 4 cm.$

 \therefore From OP cut OD = 4 cm and from OQ cut OB = 4 cm.

4. Join AB, BC, CD and DA.

5. ABCD is the required parallelogram.

6. Measure the length of side AD = 6.1 cm.

Question 12.

Using ruler and compasses only, draw a parallelogram whose diagonals are 4 cm and 6 cm long and contain an angle of 75°. Measure and write down the length of one of the shorter sides of the parallelogram. Solution:

(i) Draw a line segment AC = 6cm.

(ii) Bisect AC at O.

(iii) At O, draw a ray XY making an angle of 75° at O.

(iv) From OX and OY, cut off OD = OB =

$$\frac{4}{2} = 2 \text{ cm}$$

(v) Join AB, BC, CD and DA Then ABCD is the required parallelogram On measuring one of the shorter sides,

AB = CD = 3cm.

Question 13.

Using ruler and compasses only, construct a parallelogram ABCD with AB = 6 cm, altitude = 3.5 cm and side BC = 4 cm. Measure the acute angles of the parallelogram.

Given : AB = 6 cm Altitude = 3.5 cm and BC = 4 cm.

Required : (*i*) To construct a parallelogram ABCD. (*ii*) To measure the acute angle of parallelogram.

Steps of Construction :

1. Draw AB = 6 cm.

2. At B, draw BP \perp AB.

3. From BP, cut BE = 3.5 cm = height of || gm.

4. Through E draw QR parallel to AB.

5. With B as centre and radius BC = 4 cm draw an

arc which cuts QR at C.

6. Since opposite sides of || gm are equal

 \therefore AD = BC = 4 cm.

 \therefore With A as centre and radius = 4 cm draw an arc which cut QR at D.

7. .: ABCD is the required parallelogram.

8. To measure the acute angle of parallelogram which is equal to 61°.

Question 14.

The perpendicular distances between the pairs of opposite sides of a parallelogram ABCD are 3 cm and 4 cm and one of its angles measures 60°. Using ruler and compasses only, construct ABCD. Solution:

Given : $\angle BAD = 60^{\circ}$

height be 3 cm and 4 cm from AB and BC respectively (say)

Required : To construct a parallelogram ABCD.

Steps of Construction :

1. Draw a st. line PQ, take a point A on it.

2. At A, construct $\angle QAF = 60^{\circ}$.

3. At A, draw AE \perp PQ from AE cut off AN = 3cm 4. Through N draw a st. line parallel to PQ to meet AF at D.

5. At A, draw AG \perp AD, from AG cut off AM = 4 cm.

6. Through M, draw a st. line parallel to AD to meet AQ in B and ND in C. Then ABCD is the required parallelogram.

Question 15.

Using ruler and compasses, construct a rectangle ABCD with AB = 5cm and AD = 3 cm.

Steps of construction :

- 1. Draw a st. line AB = 5cm
- 2. At A and B construct $\angle XAB$ and $\angle YBA = 90^{\circ}$.
- 3. From A and B cut off AC and BD = 3 cm each
- 4. Join CD
- 5. ABCD is the required rectangle

Question 16.

Using ruler and compasses only, construct a rectangle each of whose diagonals measures 6cm and the diagonals intersect at an angle of 45°. Solution:

Steps of construction.

- (i) Draw a line segment AC = 6cm
- (ii) Bisect it at O
- (iii) At O, draw a ray XY making an angle
- of 45° at O.
- (iv) From XY; cut off

$$OB = OD = \frac{6}{2} = 3$$
 cm each

(v) Join AB, BC, CD and DA

Then ABCD is the required rectangle.

Question 17.

Using ruler and compasses only, construct a square having a diagonal of length 5cm. Measure its sides correct to the nearest millimeter.

Steps of construction :

(i) Draw a line segment AC = 5cm

(ii) Draw its perpendicular bisector XY bisecting it at O

(iii) From XY, cut off

$$OB = OD = \frac{5}{2} = 2.5 \text{ cm}$$

(iv) Join AB, BC, CD and DA.

ABCD is the required square

On measuring its sides,

each side = 3.6 cm (approximately)

Question 18.

Ì

Using ruler and compasses only construct A rhombus ABCD given that AB 5cm, AC = 6cm measure \angle BAD.

Steps of construction.

(i) Draw a line segment AB = 5cm

(ii) With centre A and radius 6cm, with centre B and radius 5cm, draw arcs intersecting each other at C.

(iii) Join AC and BC

(iv) With centre A and C and radius 5cm, draw arcs intersecting eachother at D

(v) Join AD and CD.

Then ABCD is a rhombus

On measuring, $\angle BAD = 106^{\circ}$

Question 19.

Using ruler and compasses only, construct rhombus ABCD with sides of length 4cm and diagonal AC of length 5 cm. Measure $\angle ABC$. Solution:

(i) Draw a line segment AC = 5cm

(ii) With centre A and C and radius 4cm, draw arcs intersecting each other above and below AC at D and B.

(iii) Join AB, BC, CD and DA

ABCD is the required rhombus.

Question 20.

Construct a rhombus PQRS whose diagonals PR and QS are 8cip and 6cm respectively. Solution:

(i) Draw a line segment PR = 8cm
(ii) Draw its perpendicular bisector XY intersecting it at O.

(iii) From XY, cut off OQ = OS

$$=\frac{6}{2}=3$$
cm each.

(iv) Join PQ, QR, RS and SP Then PQRS is the required rhombus.

Question 21.

Construct a rhombus ABCD of side 4.6 cm and \angle BCD = 135°, by using ruler and compasses only.

Steps of construction :

- (i) Draw a line segment BC = 4.6 cm.
- (ii) At C, draw a ray CX making an angle of
- 135° and cut off CD = 4.6 cm.

(iii) With centres B and D, and radius 4.6 cm draw arcs intersecting each other at A.

(iv) Join BA, DA

Then ABCD is the required rhombus.

Question 22.

Construct a trapezium in which AB || CD, AB = 4.6 cm, \angle ABC = 90°, \angle DAB = 120° and the distance between parallel sides is 2.9 cm. Solution:

(i) Draw a line segment AB = 4.6 cm (ii) At B, draw a ray BZ making an angle of 90° and cut off BC = 2.9 cm (distance between AB and CD)

(iii) At C, draw a parallel line XY to AB.(iv) At A, draw a ray making an angle of 120° meeting XY at D.

Then ABCD is the required trapezium.

Question 23.

Construct a trapezium ABCD when one of parallel sides AB = 4.8 cm, height = 2.6cm, BC = 3.1 cm and AD = 3.6 cm.

Steps of construction :

(i) Draw a line segment AB = 4.8cm

(ii) At A draw a ray AZ making an angle of 90° and cut off AL = 2.6cm.

(iii) At L, draw a line XY parallel to AB.

(iv) With centre A and radius 3.6cm and with centre B and radius 3.1 cm, draw arcs intersecting XY at D and C respectively.

(iv) Join AD, BC

Then ABCD is the required trapezium.

Question 24.

Construct a regular hexagon of side 2.5 cm. Solution:

Given : Each side of regular Hexagon = 2.5 cm

Required : To construct a regular Hexagon.

Steps of Construction :

1. With O as centre and radius = 2.5 cm, draw a circle.

2. Take any point A on the circumference of circle.

3. With A as centre and radius equal to 2.5 cm, draw an arc which cuts the circumference in B.

4. With B as centre and radius = 2.5 cm, draw an arc which circumference of circle at C.

5. With C as centre and radius = 2.5 cm draw an arc which cuts circumference of circle at D.

6. With D as centre and radius = 2.5 cm draw an arc

which cuts circumference of circle at E.

7. With E as centre and radius = 2.5 cm draw an arc

which cuts circumference of circle at F.

8. Join AB, BC, CD, DE, EF and FA.

9. ABCDEF is the required Hexagon.

Multiple Choice Questions

Choose the correct answer from the given four options (1 to 12): **Question 1.**

Three angles of a quadrilateral are 75°, 90° and 75°. The fourth angle is (a) 90°

(a) 90°

(b) 95°

(c) 105°

(d) 120°

Solution:

Sum of 4 angles of a quadrilateral = 360° Sum of three angles = $75^{\circ} + 90^{\circ} + 75^{\circ} = 240^{\circ}$ Fourth angle = $360^{\circ} - 240^{\circ} = 120^{\circ}$ (d)

Question 2.

A quadrilateral ABCD is a trapezium if (a) AB = DC

(b) AD = BC

(c) ∠A + ∠C = 180° (d) ∠B + ∠C = 180°

Solution:

A quadrilateral ABCD is a trapezium if $\angle B + \angle C = 180^{\circ}$ (Sum of co-interior angles) (d)

Question 3.

If PQRS is a parallelogram, then $\angle Q - \angle S$ is equal to (a) 90° (b) 120° (c) 0° (d) 180° Solution: PQRS is a parallelogram $\angle Q - \angle S = 0$ (\because Opposite angles of a parallelogram, are equal) (c)

Question 4.

A diagonal of a rectangle is inclined to one side of the rectangle at 25°. The acute angle between the diagonals is

(a) 55°

- (b) 50°
- (c) 40°
- (d) 25°

Solution:

In a rectangle a diagonal is inclined to one side of the rectangle is 25°

But OA = OB

 $\therefore \angle OBA = 25^{\circ}$ But Ext. $\angle COB = \angle OAB + \angle OBA$ = 25° + 25° = 50° (c)

Question 5.

ABCD is a rhombus such that $\angle ACB = 40^{\circ}$. Then $\angle ADB$ is

(a) 40° (b) 45° (c) 50° (d) 60° Solution:

Question 6.

The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If $\angle D$ AC = 32° and $\angle AOB$ = 70°, then $\angle DBC$ is equal to (a) 24° (b) 86° (c) 38° (d) 32° Solution: Diagonals AC and BD of parallelogram ABCD intersect each other at O

 $\angle DAC = 32^\circ, \angle AOB = 70^\circ$ $\angle ADO = 70^\circ - 32^\circ \quad (\because Ext. \angle AOB = 70^\circ)$ $= 38^\circ$ But $\angle DBC = \angle ADO$ or $\angle ADB$ (Alternate angles) $\therefore \angle DBC = 38^\circ$ (c)

в

Question 7.

If the diagonals of a square ABCD intersect each other at O, then \triangle OAB is (a) an equilateral triangle

- (b) a right angled but not an isosceles triangle
- (c) an isosceles but not right angled triangle
- (d) an isosceles right angled triangle

Diagonals of square ABCD intersect each other at O

(: Diagonals of a square bisect each other at right angles)

 $(\because \angle AOB = 90^\circ \text{ and } AO = BO)$

(d)

Question 8.

If the diagonals of a quadrilateral PQRS bisect each other, then the quadrilateral PQRS must be a

- (a) parallelogram
- (b) rhombus
- (c) rectangle
- (d) square

Solution:

Diagonals of a quadrilateral PQRS bisect each other, then quadrilateral must be a parallelogram.

(: A rhombus, rectangle and square are also parallelogram) (a)

Question 9.

If the diagonals of a quadrilateral PQRS bisect each other at right angles, then the quadrilateral PQRS must be a

- (a) parallelogram
- (b) rectangle
- (c) rhombus
- (d) square

Solution:

Diagonals of quadrilateral PQRS bisect each other at right angles, then quadrilateral PQRS [must be a rhombus.

(: Square is also a rhombus with each angle equal to 90°) (c)

Question 10.

Which of the following statement is true for a parallelogram?

- (a) Its diagonals are equal.
- (b) Its diagonals are perpendicular to each other.

(c) The diagonals divide the parallelogram into four congruent triangles.

(d) The diagonals bisect each other.

Solution:

For a parallelogram an the statement 'The diagoanls bisect each other' is true. (d)

Question 11.

Which of the following is not true for a parallelogram?

- (a) opposite sides are equal
- (b) opposite angles are equal
- (c) opposite angles are bisected by the diagonals
- (d) diagonals bisect each other

Solution:

The statement that in a parallelogram, .the opposite angles are bisected by the diagonals, is not true in each case. (c)

Question 12.

A quadrilateral in which the diagonals are equal and bisect each other at right angles is a

- (a) rectangle which is not a square
- (b) rhombus which is not a square
- (c) kite which is not a square
- (d) square

Solution:

In a quadrilateral, if diagonals are equal and bisect each other at right angles, is a square. (d)

Chapter Test

Question P.Q.

The interior angles of a polygon add upto 4320°. How many sides does the polygon have ?

Solution:

Sum of interior angles of a polygon

 $=(2n-4)\times 90^{\circ}$

$$\Rightarrow 4320^\circ = (2n-4) \times 90^\circ$$

$$\Rightarrow \quad \frac{4320^{\circ}}{90^{\circ}} = (2n-4) \quad \Rightarrow \quad \frac{432}{9} = 2n-4$$

$$\Rightarrow 48 = 2n - 4 \Rightarrow 48 + 4 = 2n \Rightarrow 52 = 2n$$

$$\Rightarrow 2n = 52 \Rightarrow n = \frac{52}{2} = 26$$

Hence, the polygon have 26 sides.

Question P.Q.

If the ratio of an interior angle to the exterior angle of a regular polygon is 5:1, find the number of sides.

Solution:

The ratio of an interior angle to the exterior angle of a regular polygon = 5:1

$$\Rightarrow \frac{(2n-4) \times 90^{\circ}}{n} : \frac{360}{n} = 5:1$$

$$\Rightarrow (2n-4) \times 90^{\circ}: 360 = 5:1$$

$$\Rightarrow \frac{(2n-4) \times 90^{\circ}}{360} = \frac{5}{1} \Rightarrow \frac{2n-4}{4} = \frac{5}{1}$$

$$\Rightarrow 2n-4 = 5 \times 4 \Rightarrow 2n-4 = 20$$

$$\Rightarrow 2n = 20 + 4 \Rightarrow 2n = 24 \Rightarrow n = \frac{24}{2}$$

$$\Rightarrow n = 12$$

Hence, number of sides of regular polygon = 12.

Question P.Q.

In a pentagon ABCDE, BC || ED and $\angle B$: $\angle A$: $\angle E$ =3:4:5. Find $\angle A$.

Question 1.

In the given figure, ABCD is a parallelogram. CB is produced to E such that BE=BC. Prove that AEBD is a parallelogram.

In the figure, ABCD is a ||gm side CB is produced to E such that BE = BC BD and AE are joined To prove : AEBD is a parallelogram **Proof** : In $\triangle AEB$ and $\triangle BDC$ (Given) EB = BC(Corresponding angles) $\angle ABE = \angle DCB$ (Opposite sides of ||gm) AB = DC(SAS axiom) ∴ ΔAEB≅ΔBDC (c.p.c.t.) ∴ AE=DB (Given) But AD = CB = BE \therefore The opposite sides are equal and $\angle AEB =$ (c.p.c.t.) ∠DBC But these are corresponding angle

: AEBD is a parallelogram

Question 2.

In the given figure, ABC is an isosceles triangle in which AB=AC. AD bisects exterior angle PAC and CD || BA. Show that (i) ∠DAC=∠BCA (ii) ABCD is a parallelogram.

Given : In isosceles $\triangle ABC$, AB = AC. AD is the bisector of ext. $\angle PAC$ and $CD \parallel BA$

To prove: (i) $\angle DAC = \angle BCA$

- (*ii*) ABCD is a ∥gm **Proof**: In ∆ABC
 - $\therefore AB = AC$ (C
- ∴∠C=∠B

(Given)

- (Angles opposite to equal sides)
- $\therefore \text{ Ext. } \angle \text{PAC} = \angle \text{B} + \angle \text{C}$ $= \angle \text{C} + \angle \text{C} = 2\angle \text{C} = 2\angle \text{BCA}$
- ∴ 2∠DAC=2∠BCA ∠DAC=∠BCA But these are alternate angles
- ∴ AD || BC But AB || AC (Given)
- ∴ ABCD is a ∥gm

Question 3.

Prove that the quadrilateral obtained by joining the mid-points of an isosceles trapezium is a rhombus. Solution:

Given. ABCD is an isosceles trapezium in which AB || DC and AD = BC

P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively PQ, QR, RS and SP are joined.

To Prove. PQRS is a rhombus.

Constructions. Join AC and BD.

Proof. : ABCD is an isosceles trapezium

.: Its diagnoals are equal

 \therefore AC = BD

Now in $\triangle ABC$,

P and Q are the mid-points of AB and BC

 \therefore PQ || AC and PQ = $\frac{1}{2}$ AC ...(*i*)

Similarly in $\triangle ADC$,

S and R mid-points of CD and AD

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC ...(*ii*)

from (i) and (ii)

 $PQ \mid \mid SR \text{ and } PQ = SR$

.: PQRS is a parallelogram

Now in $\triangle APS$ and $\triangle BPQ$,

AP = BP (P is mid-point of AB)

AS = BQ (Half of equal sides) ∠A = ∠B (∴ ABCD is isosceles trapezium) ∴ $\triangle APS \cong BPQ$ ∴ PS = PQ But there are the adjacent sides of a parallelogram ∴ Sides of PQRS are equal

Hence PQRS is a rhombus.

Hence proved.

Question 4.

Find the size of each lettered angle in the Following Figures.

- (i) \cdots CDE is a st. line
- $\angle ADE + \angle ADC = 180^{\circ}$ *.*.. (JB 122 D (i) $122^{\circ} + \angle ADC = 180^{\circ}$ $\angle ADC = 180^{\circ} - 122^{\circ\circ}$ $\angle ADC = 58^{\circ}$(1) $\angle ABC = 360^{\circ} - 140^{\circ} = 220^{\circ}$ (At any point the angle is 360°) ...(2) Now, in quadrilateral ABCD, $\angle ADC + \angle BCD + \angle BAD + \angle ABC = 360^{\circ}$ \Rightarrow 58° + 53° + x + 220° = 360° [using (1) and (2)] \Rightarrow 331° + x = 360° \Rightarrow x = 360° - 331° $\Rightarrow x = 29^{\circ}$ Ans. (*ii*) ∵ DE || AB (given) ∠ECB = ∠CBA (Alternate angles) *.*.. \Rightarrow 75° = \angle CBA $\angle CBA = 75^{\circ}$:: AD || BC (given) \therefore (x + 66°) + (75°) = 180° (co-interior angles are supplementary) \Rightarrow x+66°+75°=180° \Rightarrow x+141°=180° \Rightarrow x = 180° - 141° $\therefore x = 39^{\circ}$...(1) Now, in $\triangle AMB$,

Now, in $\triangle AMB$,

 $x + 30^\circ + \angle AMB = 180^\circ$ (sum of all angles in a triangle is 180°) $39^{\circ} + 30^{\circ} + \angle AMB = 180^{\circ}$ ⇒ [From (1)] \Rightarrow 69° + \angle AMB = 180° $\angle AMB = 180^{\circ} - 69^{\circ}$ ⇒ $\angle AMB = 111^{\circ}$ ⇒(2) $\therefore \angle AMB = y$ (vertically opposite angles) $111^{\circ} = y$ ⇒ [From (2)] $v = 111^{\circ}$ Hence, $x = 39^{\circ}$ and $y = 111^{\circ}$ (*iii*) In \triangle ABD AB = AD(given) $\angle ABD = \angle ADB$ (∴ equal sides have equal angles opposite to them) $\Rightarrow \angle ABD = 42^{\circ}$ $[:: \angle ADB = 42^{\circ} (given)]$ $\therefore \angle ABD + \angle ADB + \angle BAD$ $= 180^{\circ}$ (iii) (Sum of all angles in a triangle is 180°) \Rightarrow 42° + 42° + $y = 180^{\circ}$ \Rightarrow 84° + $y = 180^{\circ}$ \Rightarrow $y = 180^{\circ} - 84^{\circ} \Rightarrow$ $y = 96^{\circ}$ $\angle BCD = 2 \times 26^{\circ} = 52^{\circ}$ In ∠BCD \therefore BC = CD (given) $\therefore \angle CBD = \angle CDB = x$ [equal side have equal angles opposite to them] $\therefore \angle CBD + \angle CDB + \angle BCD = 180^{\circ}$ \Rightarrow $x + x + 52^\circ = 180^\circ \Rightarrow 2x = 180^\circ - 52^\circ$ $\Rightarrow 2x = 128^\circ \Rightarrow x = \frac{128^\circ}{2} \Rightarrow x = 64^\circ$

Hence, $x = 64^{\circ}$ and $y = 90^{\circ}$

Question 5.

Find the size of each lettered angle in the following figures :

Solution:

- (i) Here AB || CD and BC || AD (given)
- .: ABCD is a || gm

$$\therefore y = 2 \times \angle ABD$$

$$\Rightarrow y = 2 \times 53^{\circ} = 106^{\circ} \qquad \dots (1)$$

Also, $y + \angle DAB = 180^{\circ}$

$$\Rightarrow 106^{\circ} + \angle DAB = 180^{\circ}$$

$$\Rightarrow \angle DAB = 180^{\circ} - 106^{\circ} \Rightarrow \angle DAB = 74^{\circ}$$

$$\therefore x = \frac{1}{2} \angle DAB \qquad (\because AC \text{ bisect } \angle DAB)$$

 $\Rightarrow \angle BCD = 180^{\circ} - 50^{\circ}$

 $\Rightarrow \angle BCD = 130^{\circ}$

In pentagon ABCDE

 $\angle A + \angle B + \angle AED + \angle BCD + x = 540^{\circ}$

(Sum of interior angles in pentagon is 540°)

....(2)

 $\Rightarrow 90^{\circ} + 90^{\circ} + 120^{\circ} + 130^{\circ} + x = 540^{\circ}$ $\Rightarrow 430^{\circ} + x = 540^{\circ} \Rightarrow x = 540^{\circ} - 430^{\circ}$

 $\Rightarrow x = 110^{\circ}$

Hence, value of $x = 110^{\circ}$

(*iii*) In given figure, AD||BC (given)

In quadrilatoral ADEE

In quadrilateral ADEF,

 $\angle FAD + 75^{\circ} + z + 130^{\circ} = 360^{\circ}$ $\Rightarrow 70^{\circ} + 75^{\circ} + z + 130^{\circ} = 360^{\circ}$ [using (1)] $\Rightarrow 275^{\circ} + z = 360^{\circ} \Rightarrow z = 85^{\circ}$ Hence, $x = 70^{\circ}$, $y = 120^{\circ}$ and $z = 85^{\circ}$

Question 6.

In the adjoining figure, ABCD is a rhombus and DCFE is a square. If ∠ABC = 56°, find (i) ∠DAG (ii) ∠FEG

Here ABCD and DCFE is a rhombus and square respectively.

....(1) \therefore AB = BC = DC = AD Also DC = EF = FC = EF....(2) From (1) and (2), AB = BC = DC = AD = EF = FC = EF.(3) $\angle ABC = 56^{\circ}$ (given) $\angle ADC = 56^{\circ}$ (opposite angle in rhombus are equal) $\therefore \angle EDA = \angle EDC + \angle ADC = 90^{\circ} + 56^{\circ} = 146^{\circ}$ In $\triangle ADE$, [From (3)] DE = AD $\angle DEA = \angle DAE$ (equal sides have equal opposite angles) $\angle DEA = \angle DAG = \frac{180^\circ - \angle EDA}{2}$ $=\frac{180^{\circ}-146^{\circ}}{2}=\frac{34^{\circ}}{2}=17^{\circ}$ $\Rightarrow \angle DAG = 17^{\circ}$ Also, $\angle DEG = 17^{\circ}$ *.*.. $\angle FEG = \angle E - \angle DEG$ $=90^{\circ} - 17^{\circ} = 73^{\circ}$ In rhombus ABCD, $\angle DAB = 180^{\circ} - 56^{\circ} = 124^{\circ}$ $\angle DAC = \frac{124^\circ}{2}$ (:: AC diagonals bisect the $\angle A$) $\angle DAC = 62^{\circ}$ $\therefore \angle GAC = \angle DAC - \angle DAG$ $= 62^{\circ} - 17^{\circ} = 45^{\circ}$ In $\triangle EDG$, $\angle D + \angle DEG + \angle DGE = 180^{\circ}$ (Sum of all angles in a triangle is 180^{\circ}) $\Rightarrow 90^{\circ} + 17^{\circ} + \angle DGE = 180^{\circ}$ $\Rightarrow \angle DGE = 180^{\circ} - 107^{\circ} = 73^{\circ} \qquad \dots (4)$ Hence, $\angle AGC = \angle DGE \qquad \dots (5)$ (vertically opposite angles) From (4) and (5) $\angle AGC = 73^{\circ}$

Question 7.

If one angle of a rhombus is 60° and the length of a side is 8 cm, find the lengths of its diagonals.

Solution:

Each side of rhombus ABCD is 8 cm.

$$\therefore AB = BC = CD = DA = 8 cm$$

Let
$$\angle A = 60$$

∴ ∆ABD is an equilateral triangle

 $\therefore AB = BD = AD = 8 cm.$

: Diagonals of a rhombus bisect each other eight angles.

 \therefore AO = OC, BO = OD = 4 cm.

and $\angle AOB = 90^{\circ}$

Now in right $\triangle AOB$,

 $AB^2 = AO^2 + OB^2$

(Pythagoras Theorem)

$$\Rightarrow (8)^2 = AO^2 + (4)^2$$

$$\Rightarrow 64 = AO^2 + 16$$

$$\Rightarrow AO^2 = 64 - 16 = 48 = 16 + 3$$

$$\therefore AO = \sqrt{16 \times 3} = 4\sqrt{3} \text{ cm}.$$

But $AC = 2 \text{ AO}$

$$\therefore$$
 AC = 2 × 4 $\sqrt{3}$ = 8 $\sqrt{3}$ cm

Question 8.

Using ruler and compasses only, construct a parallelogram ABCD with AB = 5 cm, AD = 2.5 cm and \angle BAD = 45°. If the bisector of \angle BAD meets DC at E, prove that \angle AEB is a right angle.

Solution:

Given : AB = 5 cm, AD = 2.5 cm and

 $\angle BAD = 45^{\circ}$.

Required : (*i*) To construct a parallelogram ABCD.

(ii) If the bisector of $\angle BAD$ meets DC at E then

prove that $\angle AEB = 90^{\circ}$.

Republic Construction and the second second

`%.BARY & BARGE

2. Ean Andre - Ar an Andre Andre

L THE ANT WEED WE WITH SA CONFERENCES AP IN B.

4. The best and a set of the set

S Biz & analogical and a let an and have been shown as a set of the set of th

s kan ng <u>me (C).</u>

L distil is the stephed particular and

A REW DOMESTIC AND AND AND DORA

名 版 論議

là bhuan fu Aithe aide ann an an a

s, I

(1989) (1989)