Rectilinear Figures

Exercise 13.1

Question 1.

If two angles of a quadrilateral are 40° and 110° and the other two are in the ratio 3
: 4, find these angles.
Solution:
Sum of four angles of a quadrilateral $=360^{\circ}$
Sum of two given angles $=40^{\circ}+110^{\circ}=150^{\circ}$
\therefore Sum of remaining two angles

$$
=360^{\circ}-150=210^{\circ}
$$

Ratio in these angles $=3: 4$
\therefore Third angle $=\frac{210^{\circ} \times 3}{3+4}$

$$
=\frac{210^{\circ} \times 3}{7}=90^{\circ}
$$

$$
\text { and fourth angle }=\frac{210^{\circ} \times 4}{3+4}
$$

$$
=\frac{210^{\circ} \times 4}{7}=120^{\circ}
$$

Question 2.
If the angles of a quadrilateral, taken in order, are in the ratio $1: 2: 3: 4$, prove that it is a trapezium.
Solution:

In trapezium ABCD
$\angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}: \angle \mathrm{D}=1: 2: 3: 4$
Sum of angles of the quad. $\mathrm{ABCD}=360^{\circ}$
Sum of the ratio's $=1+2+3+4=10$

$\therefore \angle \mathrm{A}=\frac{360^{\circ} \times 1}{10}=36^{\circ}$
$\angle \mathrm{B}=\frac{360^{\circ} \times 2}{10}=72^{\circ}$
$\angle \mathrm{C}=\frac{360^{\circ} \times 3}{10}=108^{\circ}$
$\angle \mathrm{D}=\frac{360^{\circ} \times 4}{10}=144^{\circ}$
Now $\angle \mathrm{A}+\angle \mathrm{D}=36^{\circ}+114^{\circ}=180^{\circ}$
$\because \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$ and these are co-interior angles
$\therefore \mathrm{AB} \| \mathrm{DC}$ Hence $A B C D$ is a trapezium

Question 3.

If an angle of a parallelogram is two-thirds of its adjacent angle, find the angles of the parallelogram.

Solution:

Here $A B C D$ is a parallelogram.
Let $\angle \mathrm{A}=x^{\circ}$
then $\angle \mathrm{B}=\frac{2}{3} x^{\circ}$

(given condition an angle of a parallelogram is two third of its adjacent angle.)
$\therefore \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
(\because sum of adjacent angle in parallelogram is 180°)

$$
\Rightarrow x^{\circ}+\frac{2}{3} x^{\circ}=180^{\circ} \Rightarrow \frac{3 x+2 x}{3}=180
$$

$$
\Rightarrow \quad \frac{5 x}{3}=180 \Rightarrow 5 x=180 \times 3
$$

$$
\Rightarrow x=\frac{180 \times 3}{5} \Rightarrow x=36 \times 3 \Rightarrow x=108
$$

$$
\therefore \quad \angle \mathrm{A}=108^{\circ}
$$

$$
\angle \mathrm{B}=\frac{2}{3} \times 108^{\circ}=2 \times 36^{\circ}=72^{\circ}
$$

$$
\angle \mathrm{B}=\angle \mathrm{D}=72^{\circ}
$$

(opposite angle in parallelogram is same)
Also, $\angle \mathrm{A}=\angle \mathrm{C}=108^{\circ}$
(opposite angles in parallelogram is same)
Hence, angles of parallelogram are $108^{\circ}, 72^{\circ}, 108^{\circ}$, 72°

Question 4.
(a) In figure (1) given below, $A B C D$ is a parallelogram in which $\angle D A B=70^{\circ}, \angle D B C$ $=80^{\circ}$. Calculate angles CDB and ADB.
(b) In figure (2) given below, $A B C D$ is a parallelogram. Find the angles of the AAOD.
(c) In figure (3) given below, ABCD is a rhombus. Find the value of x.

(1)

(2)

Solution:
(a) $\because \mathrm{ABCD}$ is $\| \mathrm{gm}$
$\therefore \quad \mathrm{AB} \| \mathrm{CD}$
$\angle \mathrm{ADB}=\angle \mathrm{DBC} \quad$ (Alternate angles)
$\angle \mathrm{ADB}=80^{\circ} \quad\left[\because \angle \mathrm{DBC}=80^{\circ}\right.$ (given) $]$

In $\triangle \mathrm{ADB}$,

$$
\angle \mathrm{A}+\angle \mathrm{ADB}+\angle \mathrm{ABD}=180^{\circ}
$$

(sum of all angles in a triangle is 180°)
$\Rightarrow 70^{\circ}+80^{\circ}+\angle \mathrm{ABD}=180^{\circ}$
$\Rightarrow 150^{\circ}+\angle \mathrm{ABD}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{ABD}=180^{\circ}-150^{\circ}$
$\Rightarrow \quad \angle \mathrm{ABD}=30^{\circ}$
Now $\angle \mathrm{CDB}=\angle \mathrm{ABD}$
[$\because \mathrm{AB} \| \mathrm{CD}$, (Alternate angles)]
From (2) and (3)

$$
\begin{equation*}
\angle \mathrm{CDB}=30^{\circ} \tag{4}
\end{equation*}
$$

From (1) and (4)
$\angle \mathrm{CDB}=30^{\circ}$ and $\angle \mathrm{ABD}=80^{\circ}$
(b) Given $\angle \mathrm{BCO}=35^{\circ}, \angle \mathrm{CBO}=77^{\circ}$

In $\triangle \mathrm{BOC}$

$$
\angle \mathrm{BOC}+\angle \mathrm{BCO}+\angle \mathrm{CBO}=180^{\circ}
$$

(Sum of all angles in a triangle is 180°)

$\angle \mathrm{BOC}=180^{\circ}-112^{\circ}=68^{\circ}$
Now in \|gm ABCD,
We have,
$\angle \mathrm{AOD}=\angle \mathrm{BOC}$
(vertically opposite angles)
$\therefore \angle \mathrm{AOD}=68^{\circ}$
(c) ABCD is a rhombus $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
(In rhombus sum of adjacent angle is 180°)

$\Rightarrow 72^{\circ}+\angle \mathrm{B}=180^{\circ} \Rightarrow \angle \mathrm{B}=180^{\circ}=72^{\circ}$
$\Rightarrow \angle B=108^{\circ}$
$\therefore \quad x=\frac{1}{2} \angle \mathrm{~B}=\frac{1}{2} \times 108^{\circ}=54^{\circ}$

Question 5.
(a) In figure (1) given below, ABCD is a parallelogram with perimeter 40 . Find the
values of x and y.
(b) In figure (2) given below. $A B C D$ is a parallelogram. Find the values of x and y. (c) In figure (3) given below. ABCD is a rhombus. Find x and y. Solution:

(a) Since $A B C D$ is a parallelogram.
$\therefore \mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{AD}$
$\therefore 3 x=2 y+2$
$(A B=C D)$
$3 x-2 y=2$
Also, $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}=40$
$\Rightarrow 3 x+2 x+2 y+2+2 x=40$
$\Rightarrow 7 x+2 y=40-2 \Rightarrow 7 x+2 y=38$
Adding (1) and (2),

$$
3 x-2 y=2
$$

$$
7 x+2 y=38
$$

$$
10 x .=40
$$

$\Rightarrow \quad x=\frac{40}{10}=4$
Substituting the value of x in (1), we get
$3 \times 4-2 y=2 \Rightarrow 12-2 y=2 \Rightarrow-2 y=2-12$
$\Rightarrow-2 y=-10 \Rightarrow y=\frac{-10}{-2}$
$\therefore y=5$
Hence, $x=4, y=5$ 人ns.
(b) In parallelogram ABCD
$\angle \mathrm{A}=\angle \mathrm{C} \quad$ (opposite angles are same in IIgm)
$\Rightarrow 3 x-20^{\circ}=x+40^{\circ} \Rightarrow 3 x-x=40^{\circ}+20^{\circ}$
$\Rightarrow 2 x=60^{\circ}$
$\Rightarrow x=\frac{60^{\circ}}{-2}$
$\Rightarrow \quad x=30^{\circ}$
Also, $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
(sum of adjacent angles in llgm is equal to 180°)

$$
\Rightarrow \quad 3 x-20^{\circ}+y+15^{\circ}=180^{\circ}
$$

$$
\Rightarrow 3 x+y-5^{\circ}=180^{\circ} \Rightarrow 3 x+y=180^{\circ}+5^{\circ}
$$

$$
\Rightarrow 3 x+y=185^{\circ} \Rightarrow 3 \times 30^{\circ}+y=185^{\circ}
$$

[Putting the value of x From (1)]
$\Rightarrow 90^{\circ}+y=185^{\circ} \Rightarrow y=185^{\circ}-90^{\circ}$
$\Rightarrow y=95^{\circ}$
Hence, $x=30^{\circ}, y=95^{\circ}$
(c) ABCD is a rhombus

$$
\therefore \quad \mathrm{AB}=\mathrm{AD}
$$

$$
\Rightarrow \quad 3 x+2=4 x-4
$$

$\Rightarrow 3 x-4 x=-4-2$
$\Rightarrow \quad-x=-6$
$\Rightarrow x=6$
In $\triangle \mathrm{ABD}$,
$\therefore \quad \angle \mathrm{BAD}=60^{\circ}$, Also $\mathrm{AB}=\mathrm{AD}$
$\therefore \angle \mathrm{ADB}=\angle \mathrm{ABD}$
$\therefore \quad \angle \mathrm{ADB}=\frac{180^{\circ}-\angle \mathrm{BAD}}{2}$
$=\frac{180^{\circ}-60^{\circ}}{2}=\frac{120^{\circ}}{2}=60^{\circ}$
$\triangle \mathrm{ABD}$ is equilateral triangle
(\because each angles of this triangle are 60°)
$\therefore \quad \mathrm{AB}=\mathrm{BD}$
$\Rightarrow 3 x+2=y-1 \Rightarrow 3 \times 6+2=y-1$
[substituting the value of x from (1)]
$\Rightarrow 18+2=y-1 \Rightarrow 20=y-1$
$\Rightarrow y-1=20 \Rightarrow y=20+1 \Rightarrow y=21$
Hence, $x=6$ and $y=21$

Question 6.
The diagonals $A C$ and $B D$ of a rectangle $>A B C D$ intersect each other at P. If $\angle A B D=$ 50°, find $\angle D P C$.

Solution:
ABCD is a rectangle
Since diagonals of rectangle are same and bisect each other.
$\therefore \quad \mathrm{AP}=\mathrm{BP}$
$\therefore \quad \angle \mathrm{PAB}=\angle \mathrm{PBA}$
(equal sides have equal opposite angles)

$\Rightarrow \quad \angle \mathrm{PAB}=50^{\circ} \quad\left[\because \angle \mathrm{PBA}=50^{\circ}\right.$ (given) $]$
In $\triangle \mathrm{APB}$,
$\angle \mathrm{APB}+\angle \mathrm{ABP}+\angle \mathrm{BAP}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{APB}+50^{\circ}+50^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{APB}=180^{\circ}-100^{\circ}$
$\Rightarrow \quad \angle \mathrm{APB}=80^{\circ}$
$\therefore \quad \angle \mathrm{DPB}=\angle \mathrm{APB}$
(vertically opposite angles)
From (1) and (2)
$\angle \mathrm{DPB}=80^{\circ}$

Question 7.

(a) In figure (1) given below, equilateral triangle EBC surmounts square $A B C D$.

Find angle BED represented by x.
(b) In figure (2) given below, $A B C D$ is a rectangle and diagonals intersect at O. $A C$ is produced to E . If $\angle E C D=146^{\circ}$, find the angles of the $\triangle A O B$.
(c) In figure (3) given below, $A B C D$ is rhombus and diagonals intersect at \mathbf{O}. If $\angle O A B: \angle O B A=3: 2$, find the angles of the $\triangle A O D$.

Solution:
(a) Since $E B C$ is an equilateral triangle $\mathrm{EB}=\mathrm{BC}=\mathrm{EC}$

$$
\begin{equation*}
\therefore \quad \mathrm{EB}=\mathrm{BC}=\mathrm{EC} \tag{1}
\end{equation*}
$$

Also, ABCD is a square

$$
\begin{equation*}
\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD} \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
\begin{equation*}
\mathrm{EB}=\mathrm{EC}=\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD} \tag{3}
\end{equation*}
$$

In $\triangle \mathrm{ECD}$,

$$
\angle \mathrm{ECD}=\angle \mathrm{BCD}+\angle \mathrm{ECB}
$$

(BEC is an equilateral triangle)

$$
\begin{equation*}
\Rightarrow \quad \angle \mathrm{ECD}=90^{\circ}+60^{\circ}=150^{\circ} \tag{4}
\end{equation*}
$$

Also, $\mathrm{EC}=\mathrm{CD}$
[From (3)]
$\therefore \angle \mathrm{DEC}=\angle \mathrm{CDE}$
$\therefore \quad \angle \mathrm{ECD}+\angle \mathrm{DEC}+\angle \mathrm{CDE}=180^{\circ}$
(sum of all angles in a triangle is 180°)
$\Rightarrow 150^{\circ}+\angle \mathrm{DEC}+\angle \mathrm{DEC}=180^{\circ}$
(using (4) and (5))
$\Rightarrow 2 \angle \mathrm{DEC}=180^{\circ}-150^{\circ} \Rightarrow 2 \angle \mathrm{DEC}=30^{\circ}$
$\Rightarrow \angle \mathrm{DEC}=\frac{30^{\circ}}{2} \Rightarrow \angle \mathrm{DEC}=15^{\circ}$
Now $\angle \mathrm{BEC}=60^{\circ} \quad$ (BEC is an equilateral triangle)

$$
\begin{aligned}
& \Rightarrow \quad \angle \mathrm{BED}+\angle \mathrm{DEC}=60^{\circ} \Rightarrow \\
& \\
& \Rightarrow \quad x=60^{\circ}-15^{\circ} \Rightarrow x=45^{\circ} \\
& \\
& \\
& \\
&
\end{aligned}
$$

Hence, value of $x=45^{\circ}$
(b) Since $A B C D$ is a rectangle $\angle \mathrm{ECD}=146^{\circ}$ (given)
\therefore ACE is a st. line
$\therefore \quad 146^{\circ}+\angle \mathrm{ACD}=180^{\circ}$
(linear pair)
$\Rightarrow \quad \angle \mathrm{ACD}=180^{\circ}-146^{\circ}$
$\Rightarrow \angle A C D=34^{\circ} \quad \because . . .(1)$
$\therefore \quad \angle \mathrm{CAB}=\angle \mathrm{ACD}$ (Alternate angles)...(2)
$[\because \mathrm{AB} \| \mathrm{CD}]$
From (1) and (2)
$\Rightarrow \angle \mathrm{CAB}=34^{\circ} \Rightarrow \angle \mathrm{OAB}=34^{\circ}$
In $\angle A O B$
$\mathrm{AO}=\mathrm{OB}$
(In rectangle diagonals are same \& bisect each other)
$\Rightarrow \quad \angle \mathrm{OAB}=\angle \mathrm{OBA}$
(equal sides have equal angles opposite to them)
From (3) and (4),

$$
\begin{equation*}
\angle \mathrm{OBA}=34^{\circ} \tag{5}
\end{equation*}
$$

$\therefore \angle \mathrm{AOB}+\angle \mathrm{OBA}+\angle \mathrm{OAB}=180^{\circ}$
(Sum of all angles in a triangle is 180°)

$$
\Rightarrow \quad \angle \mathrm{AOB}+34^{\circ}+34^{\circ}=180^{\circ} \quad[\text { using (3) and (5) }]
$$

$$
\Rightarrow \quad \angle A O B+68^{\circ}=180^{\circ}
$$

$$
\Rightarrow \quad \angle \mathrm{AOB}=180^{\circ}-68^{\circ} \Rightarrow \angle \mathrm{AOB}=112^{\circ}
$$

Hence, $\angle \mathrm{AOB}=112^{\circ}, \angle \mathrm{OAB}=34^{\circ}$
and $\angle \mathrm{OBA}=34^{\circ}$
(c) Here ABCD is a rhombus and diagonals intersect at O .
and $\angle \mathrm{OAB}: \angle \mathrm{OBA}=3: 2$
Let $\angle \mathrm{OAB}=2 x^{\circ}$
then $\angle \mathrm{OBA}=2 x^{\circ}$
We know that diagonals of rhombus intersect at right angles.

$$
\begin{aligned}
& \therefore \angle O A B=90^{\circ} \text { in } \triangle \mathrm{AOB} \\
& \therefore \angle \mathrm{OAB}+\angle \mathrm{OBA}=180^{\circ} \\
& \Rightarrow 90^{\circ}+3 x^{\circ}+2 x^{\circ}=180^{\circ} \Rightarrow 90^{\circ}+5 x^{\circ}=180^{\circ} \\
& \Rightarrow 5 x^{\circ}=180^{\circ}-90^{\circ} \Rightarrow x^{\circ}=\frac{90^{\circ}}{5} \\
& \Rightarrow x^{\circ}=18^{\circ}
\end{aligned}
$$

$$
\therefore \quad \angle \mathrm{OAB}=3 x^{\circ}=3 \times 18^{\circ}=54^{\circ}
$$

$$
\angle \mathrm{OBA}=2 x^{\circ}=2 \times 18^{\circ}=36^{\circ}
$$

and $\angle \mathrm{AOB}=90^{\circ}$

Question 8.

(a) In figure (1) given below, ABCD is a trapezium. Find the values of x and y.
(b) In figure (2) given below, ABCD is an isosceles trapezium. Find the values of x and. y.
(c) In figure (3) given below, $A B C D$ is a kite and diagonals intersect at 0 . If $\angle D A B$ $=112^{\circ}$ and $\angle D C B=64^{\circ}$, find $\angle O D C$ and $\angle O B A$.

Solution:
(a) Given : ABCD is a trapezium
$\angle \mathrm{A}=x+20^{\circ}, \angle \mathrm{B}=y, \angle \mathrm{C}=92^{\circ}, \angle \mathrm{D}=2 x+10^{\circ}$
Required : Value of x and y.
Since ABCD is a trapezium.
Sol. $\angle B+\angle C=180^{\circ}$
($\because \mathrm{AB} \| \mathrm{DC}$)
$\Rightarrow y+92^{\circ}=180^{\circ}$
$\Rightarrow y=180^{\circ}-92^{\circ} \Rightarrow y=88^{\circ}$
Also, $\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow x+20^{\circ}+2 x+10^{\circ}=180^{\circ}$
$\Rightarrow 3 x+30^{\circ}=180^{\circ}$
$\Rightarrow 3 x=180^{\circ}-30^{\circ} \Rightarrow 3 x=150^{\circ}$
$\Rightarrow x=\frac{150^{\circ}}{3^{\circ}} \Rightarrow x=50^{\circ}$
Hence, value of $x=50^{\circ}$ and $y=88^{\circ}$
(b) Given : ABCD is an isosceles trapezium $\mathrm{BC}=\mathrm{AD}$
$\angle \mathrm{A}=2 \mathrm{x}, \angle \mathrm{C}=y, \angle \mathrm{D}=3 x$
Required : Value of x and y.
Sol. Since ABCD is a trapezium and $\mathrm{AB} \| \mathrm{DC}$
$\therefore \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow 2 x+3 x=180^{\circ}$
$\Rightarrow 5 x=180^{\circ}$
$\Rightarrow x=\frac{180^{\circ}}{5}=36^{\circ}$
$\therefore \quad x=36^{\circ}$
Also, $\mathrm{AB}=\mathrm{BC}$ and $\mathrm{AB} \| \mathrm{DC}$
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ} \Rightarrow 2 x+y=180^{\circ}$
$\Rightarrow 2 \times 36^{\circ}+y=180^{\circ}$
[substituting the value of x from (1)]
$\Rightarrow 72^{\circ}+y=180^{\circ} \Rightarrow y=180^{\circ}-72^{\circ}$
$\Rightarrow y=108^{\circ}$

Hence, value of $x=72^{\circ}$ and $y=108^{\circ}$
(c) Given : ABCD is a kite and diagonals intersect at O .
$\angle \mathrm{DAB}=112^{\circ}$ and
$\angle \mathrm{DCB}=64^{\circ}$
Required: $\angle \mathrm{ODC}$ and $\angle \mathrm{OBA}$
Sol. : \therefore AC diagonal of kite $A B C D$
$\therefore \quad \angle \mathrm{DOC}=\frac{64}{2}^{\circ}=32^{\circ}$
$\therefore \angle \mathrm{DOC}=90^{\circ}$
(diagonal of kites bisect at right angles)
In $\angle O C D$,
$\therefore \angle \mathrm{ODC}=180^{\circ}-(\angle \mathrm{DCO}+\angle \mathrm{DOC})$
$=180^{\circ}-\left(32^{\circ}+90^{\circ}\right)=180^{\circ}-122^{\circ}=58^{\circ}$
In $\triangle \mathrm{DAB}$,
$\angle \mathrm{OAB}=\frac{112^{\circ}}{2}=56^{\circ}$
$\angle \mathrm{OAB}=90^{\circ}$
(diagonals of kites bisect at right angles)
In $\triangle \mathrm{OAB}$
$\angle \mathrm{OBA}=180^{\circ}-(\angle \mathrm{OAB}+\angle \mathrm{AOB})$
$=180^{\circ}-\left(56^{\circ}+90^{\circ}\right)=180^{\circ}-146^{\circ}=34^{\circ}$
Hence, $\angle \mathrm{ODC}=58^{\circ}$ and $\angle \mathrm{OBA}=34^{\circ}$

Question 9.

(i) Prove that each angle of a rectangle is 90°.
(ii) If the angle of a quadrilateral are equal, prove that it is a rectangle.
(iii) If the diagonals of a rhombus are equal, prove that it is a square.
(iv) Prove that every diagonal of a rhombus bisects the angles at the vertices.

Solution:
(i) A rectanglè ABCD

To prove : Each angle of rectangle $=90^{\circ}$
Proof : \because Opposite angles of a rectangle are equal
$\therefore \angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
(Sum of angles of a quadrilateral)
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{A}+\angle \mathrm{B}=360^{\circ}$
$\Rightarrow 2(\angle A+\angle B)=360^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}=\frac{360^{\circ}}{2}=180^{\circ}$
But $\angle \mathrm{A}+\angle \mathrm{B} \quad$ (Angles of a rectangle)
$\therefore \angle \mathrm{A}=\angle \mathrm{B}=90^{\circ}$
Hence $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
(ii) Given : In quadrilateral ABCD ,
$\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}$
To prove: ABCD is a rectangle

Proof: $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
But these are opposite angles of the quadrilateral
$\therefore \mathrm{ABCD}$ is a parallelogram
$\because \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
Hence $A B C D$ is a rectangle
Hence proved.
(iii) Given : $\triangle \mathrm{ABCD}$ is a rhombus in which $\mathrm{AC}=\mathrm{BD}$

To Prove : $A B C D$ is a square.

Proof: In $\triangle A B C$ and $\triangle D C B$,
$\mathrm{AB}=\mathrm{DC}$
(ABCD is a rhombus)
$B C=B C$
(common)
and $\mathrm{AC}=\mathrm{BD}$
(given)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$
(By S.S.S. axiom of congruency)
$\therefore \angle \mathrm{ABC}=\angle \mathrm{DBC} \quad$ (c.p.c.t.)
But these are angle made by transversal
BC on the same side of parallel
Lines $A B$ and $C D$
$\therefore \quad \angle \mathrm{ABC}+\angle \mathrm{DBC}=180^{\circ}$
$\therefore \quad \angle \mathrm{ABC}=90^{\circ}$
$\therefore \quad \mathrm{ABCD}$ is a square
(Q.E.D.)
(iv) AC and BD bisects $\angle \mathrm{A}, \angle \mathrm{C}$ and $\angle \mathrm{B}, \angle \mathrm{D}$ respectively.

Proof:

Statements

Reasons

(1) In $\triangle A O D$ and $\triangle C O D$ (each side or rhombus
$\mathrm{AD}=\mathrm{CD}$
$O D=O D$
$A O=O C$
(2) $\triangle \mathrm{AOD} \cong \triangle C O D$ is same)
(common)
(diagonal of rhombus bisect each other)
[S.S.S.]
(3) $\angle \mathrm{AOD}=\angle \mathrm{COD}$
[c.p.c.t.]
(4) $\angle \mathrm{AOD}+\angle \mathrm{COD}=180^{\circ} \quad \mathrm{AOC}$ is a st. line
$\Rightarrow \angle \mathrm{AOD}+\angle \mathrm{COD}=180^{\circ} \mathrm{By}(3)$
$\Rightarrow 2 \angle \mathrm{AOD}=180^{\circ} \Rightarrow \angle \mathrm{AOD}=\frac{180^{\circ}}{2}$
$\Rightarrow \quad \angle \mathrm{AOD}=90^{\circ}$
(5) $\angle \mathrm{COD}=90^{\circ} \quad \mathrm{By} \mathrm{(3)} \mathrm{and} \mathrm{(4)}$
$\therefore \mathrm{OD} \perp \mathrm{AC} \quad \Rightarrow \mathrm{BD} \perp \mathrm{AC}$
(6) $\angle \mathrm{ADO}=\dot{\angle \mathrm{CDO}} \quad$ (c.p.c.t.)
$\Rightarrow \mathrm{OD}$ bisect $\angle \mathrm{D} \Rightarrow \mathrm{BD}$ bisect $\angle \mathrm{D}$
Similarly we can prove that BD bisect $\angle \mathrm{B}$.
and AC bisect the $\angle \mathrm{A}$ and $\angle \mathrm{C}$.

Question 10.
$A B C D$ is a parallelogram. If the diagonal $A C$ bisects $\angle A$, then prove that:
(i) AC bisects $\angle C$
(ii) $A B C D$ is a rhombus
(iii) $A C \perp B D$.

Solution:
Given : In parallelogram $A B C D$, diagonal $A C$
bisects $\angle \mathrm{A}$
To prove : (i) AC bisects $\angle \mathrm{C}$
(ii) ABCD is a rhombus
(iii) $\mathrm{AC} \perp \mathrm{BD}$

Proof: $(i) \because \mathrm{AB} \| \mathrm{CD}$ (opposite sides of a \|gm)
$\therefore \angle \mathrm{DCA}=\angle \mathrm{CAB} \quad$ (Alternate angles)
Similarly $\angle \mathrm{DAC}=\angle \mathrm{DCB}$
But $\angle \mathrm{CAB}=\angle \mathrm{DAC} \quad(\because \mathrm{AC}$ bisects $\angle \mathrm{A})$
$\therefore \angle \mathrm{DCA}=\angle \mathrm{ACB}$
\therefore AC bisects $\angle \mathrm{C}$
(iii) $\because \mathrm{AC}$ bisects $\angle \mathrm{A}$ and $\angle \mathrm{C}$
and $\angle \mathrm{A}=\angle \mathrm{C}$
$\therefore \mathrm{ABCD}$ is a rhombus
(iii) $\because \mathrm{AC}$ and BD are the diagonals of a rhombus
$\therefore \mathrm{AC}$ and BD bisect each other at right angles
Hence $A C$ ' \perp BD
Hence proved.

Question 11.

(i) Prove that bisectors of any two adjacent angles of a parallelogram are at right angles.
(ii) Prove that bisectors of any two opposite angles of a parallelogram are parallel.
(iii) If the diagonals of a quadrilateral are equal and bisect each other at right
angles, then prove that it is a square.
Solution:
(i) Given AM bisect angle A and BM bisects angle B of $\| \mathrm{gm} \mathrm{ABCD}$

To Prove : $\angle \mathrm{AMB}=90^{\circ}$

Proof:

Statements
(1) $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
(2) $\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B})=\frac{180^{\circ}}{2}$ Multiplying both sides by $\frac{1}{2}$
$\Rightarrow \frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{~B}=90^{\circ}$
$\Rightarrow \angle \mathrm{MAB}+\angle \mathrm{MBA}=90^{\circ}(\mathrm{i}) \mathrm{AM}$ bisects $\angle \mathrm{A}$ $\therefore \frac{1}{2} \angle \mathrm{~A}=\angle \mathrm{MAB}$
(ii) BM bisects $\angle \mathrm{B}$.

$$
\therefore \frac{1}{2} \angle \mathrm{~B}=\angle \mathrm{MBA}
$$

(3) In $\triangle \mathrm{AMB}$,

$$
\begin{aligned}
& \angle \mathrm{AMB}+\angle \mathrm{MAB} \\
& +\angle \mathrm{MBA}=180^{\circ} \\
& \Rightarrow \angle \mathrm{AMB}+(\angle \mathrm{MAB} \\
& +\angle \mathrm{MAB})=180^{\circ}
\end{aligned}
$$

Sum of angles of a triangle is equal to 180°

$$
\text { (4) } \angle \mathrm{AMB}+90^{\circ}=180^{\circ}
$$

From (2) and (3)

$$
\Rightarrow \angle \mathrm{AMB}=180^{\circ}-90^{\circ}
$$

$$
\Rightarrow \angle \mathrm{AMB}=90^{\circ}
$$

(ii) Given : a ll gm ABCD in which bisector AR of $\angle A$ meets $D C$ in R and bisector $C Q$ of $\angle C$ meets $A B$ in Q.

To Prove : AR \| CQ
Proof:

Statements

(1) In || gm ABCD

$$
\angle \mathrm{A}=\angle \mathrm{C}
$$

$\Rightarrow \frac{1}{2} \angle \mathrm{~A}=\frac{1}{2} \angle \mathrm{C}$
opposite angles of II gm are equal.
multiplying both sides
by $\frac{1}{2}$.
$\Rightarrow \angle \mathrm{DAR}=\angle \mathrm{BCQ}(i) \mathrm{AR}$ is bisector of $\frac{1}{2} \angle \mathrm{~A}=\angle \mathrm{DAR}$
(ii) CQ is bisector of
$\frac{1}{2} \angle \mathrm{C}=\angle \mathrm{BCQ}$
(2) In $\triangle A D R$ and $\triangle C B Q$

$$
\angle \mathrm{DAR}=\angle \mathrm{BCQ} \quad \text { Proved in }(1)
$$

$\mathrm{AD}=\mathrm{BC} \quad$ opposite sides of $\| \mathrm{gm}$
ABCD are equal.
$\angle \mathrm{D}=\angle \mathrm{B} \quad$ opposite sides of II gm ABCD are equal.
$\therefore \triangle \mathrm{ADR} \cong \Delta \mathrm{CBQ} \quad[$ By A.S.A. axiom of congruency]
$\therefore \angle \mathrm{DRA}=\angle \mathrm{BCQ} \quad$ [c.p.c.t.]
(3) $\angle \mathrm{DRA}=\angle \mathrm{RAQ} \quad$ Alternate angles
[DC \| $\mathrm{AB}, \because \mathrm{ABCD}$ is a \| gm]
(4) $\angle \mathrm{RAQ}=\angle \mathrm{BCQ} \quad$ From (2) and (3)

But these are corresponding angles
$\therefore \mathrm{AR} \| \mathrm{CQ}$
(Q.E.D.)
(iii) Given : In quadrilateral $A B C D$, diagonals $A C$ and $B D$ are equal and bisect each other at right angles

To prove : $A B C D$ is a square

Proof: In $\triangle A O B$ and $\triangle C O D$
$A O=O C$
$\mathrm{BO}=\mathrm{OD}$
$\angle \mathrm{AOB}=\angle \mathrm{COD} \quad$ (vertically opposite angles)
$\therefore \triangle \mathrm{AOB} \cong \triangle C O D \quad$ (SAS axiom)
$\therefore \mathrm{AB}=\mathrm{CD}$ and $\angle \mathrm{OAB}=\angle \mathrm{OCD}$
But these are alternate angles
$\therefore \mathrm{AB} \| \mathrm{CD}$
$\therefore \mathrm{ABCD}$ is a parallelogram
\because In a parallelogram, the diagonal bisect each other
and are equal
$\therefore \mathrm{ABCD}$ is a square

Question 12.

(i) If $A B C D$ is a rectangle in which the diagonal $B D$ bisect $\angle B$, then show that $A B C D$ is a square.
(ii) Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
Solution:
(i) ABCD is a rectangle and its diagonals AC bisects $\angle \mathrm{A}$ and $\angle \mathrm{C}$

To prove : $A B C D$ is a square
Proof: \because Opposite sides of a rectangle are equal and each angle is 90°
$\because A C$ bisects $\angle A$ and $\angle C$
$\therefore \angle 1=\angle 2$ and $\angle 3=\angle 4$
But $\angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}$
$\therefore \angle 2=45^{\circ}$ and $\angle 4=45^{\circ}$
$\therefore \mathrm{AB}=\mathrm{BC} \quad$ (Opposite sides of equal angles)
But $A B=C D$ and $B C=A D$
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
$\therefore \mathrm{ABCD}$ is a square
(ii) In quadrilateral ABCD diagonals AC and BD are equal and bisect each other at right angle
To prove : $A B C D$ is a square
Proof: In $\triangle A O B$ and $\triangle B O C$
$\mathrm{AO}=\mathrm{CO}$
(Diagonals bisect each other at right angle)

$$
\begin{aligned}
& \mathrm{OB}=\mathrm{OB} \\
& \angle \mathrm{AOB}=\angle \mathrm{COB}
\end{aligned}
$$

(Common)
(Each 90°)
$\therefore \triangle A O B \cong \triangle B O C$
$\therefore \mathrm{AB}=\mathrm{BC}$
Similarly in $\triangle B O C$ and $\triangle C O D$
$O B=O D$
(Diagonals bisect each other at right angles)
$\mathrm{OC}=\mathrm{OC}$
(Common)
$\angle \mathrm{BOC}=\angle \mathrm{COD}$
(Each 90°)
$\therefore \triangle \mathrm{BOC} \cong \triangle \mathrm{COD}$
$\therefore \mathrm{BC}=\mathrm{CD}$
From (i) and (ii),

$$
\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}
$$

$\therefore \mathrm{ABCD}$ is a square

Question 13.

P and Q are points on opposite sides $A D$ and $B C$ of a parallelogram $A B C D$ such that PQ passes through the point of intersection O of its diagonals $A C$ and $B D$. Show that PQ is bisected at 0 .
Solution:
$A B C D$ is a parallelogram P and Q are the points on $A B$ and $D C$. Diagonals AC and BD intersect each other at O.

To prove: $\mathrm{OP}=\mathrm{OQ}$
Proof: \because Diagonals of $\| g m$ ABCD bisect each other at O
$\therefore A O=O C$ and $B O=O D$
Now in $\triangle A O P$ and $\triangle C O Q$

$$
\mathrm{AO}=\mathrm{OC}
$$

$$
\angle \mathrm{OAP}=\angle \mathrm{OCQ}
$$

$$
\angle \mathrm{AOP}=\angle \mathrm{COQ}
$$

(Vertically opposite angles)
$\therefore \triangle \mathrm{AOP} \cong \triangle \mathrm{COQ}$
(SAS axiom)
$\therefore \mathrm{OP}=\mathrm{OQ}$
Hence O bisects PQ

Question 14.

(a) In figure (1) given below, $A B C D$ is a parallelogram and X is mid-point of $B C$. The line $A X$ produced meets $D C$ produced at Q. The parallelogram $A B P Q$ is completed. Prove that:
(i) the triangles $A B X$ and $Q C X$ are congruent;
(ii)DC = CQ = QP
(b) In figure (2) given below, points P and Q have been taken on opposite sides $A B$ and $C D$ respectively of a parallelogram $A B C D$ such that $A P=C Q$. Show that $A C$ and $P Q$ bisect each other.

(1)

Solution:
(a) Given : ABCD is a parallelogram and X is mid-point of $B C$. The line $A X$ produced meets $D C$ produced at Q and ABPQ is a \| gm.

To Prove : (i) $\triangle \mathrm{ABX} \cong \triangle \mathrm{QCX}$
(ii) $\mathrm{DC}=\mathrm{CQ}=\mathrm{QP}$

Proof :
Statements Reasons
(1) In $\triangle A B X$ and $\triangle Q C X$

$$
B X=X C \quad X \text { is the mid-point of } B C
$$

$\angle \mathrm{AXB}=\angle \mathrm{CXQ} \quad$ vertically opposite angles
$\angle \mathrm{XCQ}=\angle \mathrm{XBA} \quad$ Alternate angle
$(\because \mathrm{AB} \| \mathrm{CQ})$
$\therefore \triangle \mathrm{ABX} \cong \triangle \mathrm{QCX}$ [A.S.A.]
(2) $\therefore \mathrm{CQ}=\mathrm{AB}$
[c.p.c.t.]
(3) $\mathrm{AB}=\mathrm{DC} \quad \mathrm{ABCD}$ is a $\| \mathrm{gm}$
(4) $\mathrm{AB}=\mathrm{QP} \quad \mathrm{ABPQ}$ is a II gm
(5) $\mathrm{DC}=\mathrm{CQ}=\mathrm{QP} \quad$ From (2), (3) and (4)
(Q.E.D.)
(b) In \|gm ABCD,
P and Q are points on $A B$ and $C D$ respectively
$P Q$ and $A C$ intersect each other at O and $A P$
$=C Q$.
To prove : AC and PQ bisect each other
i.e., $\mathrm{AO}=\mathrm{OC}, \mathrm{PO}=\mathrm{OQ}$

Proof: In $\triangle A O P$ and $\triangle C O Q$
$\mathrm{AP}=\mathrm{CQ}$
(Given)
$\angle A O P=\angle C O Q$
(Vertically opposite angles)
$\angle \mathrm{OAP}=\angle \mathrm{OCQ} \quad$ (Alternate angles)
$\therefore \triangle \mathrm{AOP} \cong \triangle \mathrm{COQ} \quad$ (AAS axiom)
$\therefore \mathrm{OP}=\mathrm{OQ}$ (c.p.c.t.)
and $\mathrm{OA}=\mathrm{OC} \quad$ (c.p.c.t.)
Hence $A C$ and $P Q$ bisect each other.

Question 15.
ABCD is a square. A is joined to a point P on $B C$ and D is joined to a point Q on $A B$. If $A P=D Q$, prove that $A P$ and $D Q$ are perpendicular to each other.
Solution:

Given : ABCD is a square. P is any point on $B C$ and Q is any point on $A B$ and these points are taken such that $A P=D Q$.

To Prove: AP \perp DQ.
Proof:
Statements

Reasons

(1) In $\triangle A B P$ and $\triangle A D Q$
$A P=D Q$
given
$\mathrm{AD}=\mathrm{AB}$
ABCD is a square
$\angle \mathrm{DAQ}=\angle \mathrm{ABP}$
$\therefore \triangle \mathrm{ABP} \cong \triangle \mathrm{ADQ}$
ABCD is a square and each 90°
[R.H.S. axiom of congruency]
$\therefore \angle \mathrm{BAP}=\angle \mathrm{ADQ}$
(2) But $\angle \mathrm{BAD}=90^{\circ}$
(3) $\angle \mathrm{BAD}=\angle \mathrm{BAP}+\angle \mathrm{PAD}$
$90^{\circ}=\angle \mathrm{BAP}+\angle \mathrm{PAD}$
each angle of
square is 90°

$$
\begin{equation*}
\Rightarrow \quad \angle \mathrm{BAP}+\angle \mathrm{PAD}=90^{\circ} \tag{2}
\end{equation*}
$$

$$
\Rightarrow \quad \angle \mathrm{PAD}+\angle \mathrm{ADQ}=90^{\circ}
$$

(4) In $\triangle \mathrm{ADM}$,

$$
\begin{aligned}
& \angle \mathrm{MAD}+\angle \mathrm{ADM}+ \\
& \angle \mathrm{AMD}=180^{\circ}
\end{aligned} \begin{aligned}
& \text { Sum of all angles } \\
& \text { in a triangle is } 180^{\circ}
\end{aligned}
$$

Question 16.
If P and Q are points of trisection of the diagonal $B D$ of a parallelogram $A B C D$, prove that CQ || AP.
Solution:
Given : $A B C D$ is a $\| \mathrm{gm}$ in which $\mathrm{BP}=\mathrm{PQ}=\mathrm{QD}$
To Prove : CQ \| AP

Proof:

Statements
(1) In || gm ABCD
$\mathrm{AB}=\mathrm{CD} \quad$ opposite sides of $\| \mathrm{gm}$ are equal.
(2) In II gm ABCD

$$
\mathrm{AB}=\mathrm{CD}
$$

From (1)
and $B D$ is the transversal
$\therefore \angle 1=\angle 2 . \quad$ Alternate angles
(3) In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DCQ}$,
$A B=C D$
opposite sides of $\| \mathrm{gm}$ are equal.
$\angle 1=\angle 2$
$\mathrm{BP}=\mathrm{QD}$
$\therefore \triangle \mathrm{ABP} \cong \triangle \mathrm{DCQ}$
$\therefore \mathrm{AP}=\mathrm{QC}$
From (2)
given
[S.A.S. axiom of
congruency]
[c.p.c.t.]
Also $\angle \mathrm{APB}=\angle \mathrm{DQC}$
[c.p.c.t.]
$\Rightarrow-\angle \mathrm{APB}=-\angle \mathrm{DQC}$ multiplying both
sides by (-1)
$\Rightarrow 180^{\circ}-\angle \mathrm{APB} \quad$ Adding 180° both sides
$=180^{\circ}-\angle \mathrm{DQC}$
$\angle \mathrm{APQ}=\angle \mathrm{CQP}$
But these are alternate angles.
$\therefore \mathrm{AP}\|\mathrm{QC} \Rightarrow \mathrm{CQ}\| \mathrm{AP}$
(Q.E.D.)

Question 17.

A transversal cuts two parallel lines at A and B. The two interior angles at A are bisected and so are the two interior angles at B; the four bisectors form a quadrilateral $A B C D$. Prove that
(i) $A B C D$ is a rectangle.
(ii) $C D$ is parallel to the original parallel lines.

Solution:

Given : LM || PQ AB transversal line cut $\angle \mathrm{M}$ at A and $P Q$ at B.
$\mathrm{AC}, \mathrm{AD}, \mathrm{BC}$ and BD is the bisector of $\angle \mathrm{LAB}$, $\angle \mathrm{BAM}, \angle \mathrm{PAB}$ and $\angle \mathrm{ABQ}$ respectively.
$A C$ and $B C$ intersect at C and $A D$ and $B D$ intersect at D. A quadrilateral $A B C D$ is formed.
To Prove : (i) ABCD is a rectangle
(ii) $\mathrm{CD} \| \mathrm{LM}$ and PQ

Proof:

Statements

Reasons

(1) $\angle \mathrm{LAB}^{+} \angle \mathrm{BAM}=180^{\circ} \quad \mathrm{LAM}$ is a st. line

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2}(\angle \mathrm{LAB}+\angle \mathrm{BAM}) \text { Multiplying both } \\
& =90^{\circ} \quad \text { sides by } \frac{1}{2} \text {. } \\
& \Rightarrow \frac{1}{2} \angle \mathrm{LAB}+\frac{1}{2} \angle \mathrm{BAM} \\
& =90^{\circ} \\
& \Rightarrow \quad \angle 2+\angle 3=90^{\circ} \quad \mathrm{AC} \& \mathrm{AD} \text { is bisector } \\
& \text { of } \angle \mathrm{LAB} \& \angle \mathrm{BAM} \\
& \text { respectively. } \\
& \therefore \frac{1}{2} \angle \mathrm{LAB}=\angle 2 \\
& \text { and } \frac{1}{2} \angle \mathrm{LAB}=\angle 3 \\
& \Rightarrow \quad \angle \mathrm{CAD}=90^{\circ} \\
& \Rightarrow \angle \mathrm{A}=90^{\circ} \\
& \text { (2) Similarly, } \angle \mathrm{PBA}+\quad \mathrm{PBQ} \text { is a st. line } \\
& \angle \mathrm{QBA}=180^{\circ} \\
& \Rightarrow \quad \frac{1}{2} \angle \mathrm{PBA}+\frac{1}{2} \angle \mathrm{QBA} \text { Multiplying both } \\
& \text { sides by } \frac{1}{2} \\
& \Rightarrow \quad \angle 6+\angle 7=90^{\circ} \quad \because \mathrm{BC} \text { and } \mathrm{BD} \text { is } \\
& \text { bisector of } \angle \mathrm{PBA} \text { and } \\
& \angle \mathrm{QBA} \text { respectively. } \\
& \frac{1}{2} \angle \mathrm{PBA}=\angle 6 \\
& \frac{1}{2} \angle \mathrm{QBA}=\angle 7
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \angle \mathrm{CBD}=90^{\circ} \\
& \Rightarrow \quad \angle \mathrm{B}=90^{\circ} \\
& \text { (3) } \therefore \angle \mathrm{LAB}+\angle \mathrm{ABP} \quad \text { Sum of co-interior } \\
& =180^{\circ} \\
& \frac{1}{2} \angle \mathrm{LAB}+\frac{1}{2} \angle \mathrm{ABP} \quad \text { Multiplying both } \\
& =90^{\circ} \\
& \angle 2+\angle 6=90^{\circ} \quad \therefore A C \text { and } B C \text { is } \\
& \text { bisector of } \angle \mathrm{LAB} \text { and } \\
& \angle \mathrm{PBA} \text { respectively. } \\
& \therefore \frac{1}{2} \angle \mathrm{LAB}=\angle 2 \\
& \text { and } \frac{1}{2} \angle \mathrm{APB}=\angle 6
\end{aligned}
$$

(4) $\ln \triangle A C B$
(6) In $\triangle \mathrm{ADB}$,

$$
\begin{aligned}
& \because \angle 3+\angle 7+\angle \mathrm{D}=180^{\circ} \quad \begin{array}{l}
\text { Sum of a } \\
\text { in a triang }
\end{array} \\
& \Rightarrow \quad(\angle 3+\angle 7)+\angle \mathrm{D}=180^{\circ} \\
& \Rightarrow 90^{\circ}+\angle \mathrm{D}=180^{\circ} \quad \text { From }(5) \\
& \Rightarrow \angle \mathrm{D}=180^{\circ}-90^{\circ} \\
& \Rightarrow \angle \mathrm{D}=90^{\circ}
\end{aligned}
$$

Sum of all angles

$$
\text { in a triangle is } 180^{\circ}
$$

$$
\begin{aligned}
& \angle 2+\angle 6+\angle \mathrm{C}=180^{\circ} \quad \begin{array}{l}
\text { Sum of all angles } \\
\text { in a triangle is } 180^{\circ}
\end{array} \\
& \Rightarrow(\angle 2+\angle 6)+\angle \mathrm{C}=180^{\circ} \\
& \Rightarrow 90^{\circ}+\angle C=180^{\circ} \quad \text { using (6) } \\
& \Rightarrow \angle \mathrm{C}=90^{\circ} \\
& \text { (5) } \therefore \angle \mathrm{MAB}+\angle \mathrm{ABQ} \quad \text { Sum of co-interior } \\
& =180^{\circ} \\
& \text { angles is } 180^{\circ} \\
& \text { [(LM \| PQ) given] } \\
& \Rightarrow \frac{1}{2} \angle \mathrm{MAB}+\frac{1}{2} \angle \mathrm{ABQ} \text { Multiplying both } \\
& =\frac{180^{\circ}}{2} \\
& \Rightarrow \quad \angle 3+\angle 7=90^{\circ} . \quad \because \mathrm{AD} \text { and } \mathrm{BD} \\
& \text { bisect the } \angle \mathrm{MAB} \\
& \text { and } \angle \mathrm{ABQ} \\
& \therefore \frac{1}{2} \angle \mathrm{MAB}=\angle 3 \\
& \text { and } \frac{1}{2} \angle \mathrm{ABQ}=\angle 7
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } \angle \mathrm{LAB}+\angle \mathrm{BAM} \quad \text { From (1) and (3) } \\
& =\angle \mathrm{BAM}=\angle \mathrm{ABP} \\
& \Rightarrow \quad \frac{1}{2} \angle \mathrm{BAM}=\frac{1}{2} \angle \mathrm{ABP} \text { Multiplying both } \\
& \text { sides by } \frac{1}{2} \\
& \Rightarrow \quad \angle 3=\angle 6 \quad \because \mathrm{AD} \text { and } \mathrm{BC} \text { is } \\
& \text { bisector of } \angle \mathrm{BAM} \text { \& } \\
& \angle A B P \text { respectively. } \\
& \therefore \frac{1}{2} \angle \mathrm{BAM}=\angle 3 \\
& \text { and } \frac{1}{2} \angle \mathrm{ABP}=\angle 6
\end{aligned}
$$

Similarly $\angle 2=\angle 7$
(8) In $\triangle A B C$ and $\triangle A B D$

$$
\begin{array}{ll}
\angle 2=\angle 7 & \text { From (7) } \\
\mathrm{AB}=\mathrm{AB} & \text { common } \\
\angle 6=\angle 3 & \text { From(7) } \\
\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} & \text { [ByA.S.A. axiom of } \\
& \begin{array}{l}
\text { congruency] }
\end{array} \\
\therefore \mathrm{AC}=\mathrm{DB} & \text { [c.p.c.t.] } \\
\text { Also } \mathrm{CB}=\mathrm{AD} & \text { [c.p.c.t.] }
\end{array}
$$

(9) $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}$ From (1), (2), (4)
$=90^{\circ}$
and (6)
$\mathrm{AC}=\mathrm{DB}$
Proved in (8)
$\mathrm{CB}=\mathrm{AD}$
Proved in (8)
$\therefore \mathrm{ABCD}$ is a rectangle.
(10) $\because \mathrm{ABCD}$ is a rectangle
$\mathrm{OA}=\mathrm{OD}$
From (9)
Diagonals of rectangle bisect each other.
(11) In $\triangle A O D$

$$
O A=O D
$$

$\therefore \angle 9=\angle 3$
(12) $\angle 3=\angle 4$

From (10)
Angles opposite to equal sides are equal.
AD bisects $\angle \mathrm{MAB}$
(13) $\angle 9=\angle 4$

From (11) and (12)
But these are alternate angles.
$\therefore \quad \mathrm{OD} \| \mathrm{LM}$
$\Rightarrow \quad C D \| L M$
Similarly we can prove that

$$
\angle 10=\angle 8
$$

But these are alternate angles.
$\therefore \quad \mathrm{OD} \| \mathrm{PQ}$
$\Rightarrow \quad C D \| P Q$.
(14) $C D \| L M$ $C D \| P Q$

Proved in (13)
Proved in (19)
(Q.E.D.)

Question 18.

In a parallelogram $A B C D$, the bisector of $\angle A$ meets $D C$ in E and $A B=2 A D$. Prove that
(i) $B E$ bisects $\angle B$
(ii) $\angle A E B=$ a right angle.

Solution:
Given : $A B C D$ is a $|\mid ~ g m ~ i n ~ w h i c h ~ b i s e c t o r s ~ o f ~$ angle A and B meets in E and $A B=2 A D$.

To Prove: (i) BE bisects $\angle \mathrm{B}$
(ii) $\angle \mathrm{AEB}=$ a right angle i.e. $\angle \mathrm{AEB}=90^{\circ}$ Proof:
Statements

Reasons

(1) In II gm ABCD
$\angle 1=\angle 2$
AD bisector of $\angle \mathrm{A}$.
(2) $A B \| D C$ and AE is the transversal
$\therefore \angle 2=\angle 3$
(alternate angles)
(3) $\angle 1=\angle 2$

From (1) and (2)
(4) In $\triangle \mathrm{ADE}$

$$
\begin{aligned}
& \angle 1=\angle 3 \\
& \therefore \mathrm{DE}=\mathrm{AD} \\
& \Rightarrow \mathrm{AD}=\mathrm{DE} \\
& \text { (5) } \mathrm{AB}=2 \mathrm{AD}
\end{aligned}
$$

Prove in (3),
Sides opposite equal
angles are equal
$\Rightarrow \frac{A B}{2}=A D$
$\Rightarrow \frac{\mathrm{AB}}{2}=\mathrm{DE}$
using (4)
$\Rightarrow \frac{\mathrm{DC}}{2}=\mathrm{DE}$
$\mathrm{AB}=\mathrm{DC}$
(\because opposite sides .
of \| gm are equal)
$\therefore \mathrm{E}$ is the mid-point of D
$\therefore \mathrm{DE}=\mathrm{EC}$
(6) $\mathrm{AD}=\mathrm{BC} \quad$ opposite sides of
(7) $\mathrm{DE}=\mathrm{BC}$ Il gm are equal.
(8) $\mathrm{EC}=\mathrm{BC}$

From (4) and (6)
(9) In $\triangle \mathrm{BCE}$

$$
\mathrm{EC}=\mathrm{BC}
$$

Proved in (8)
$\therefore \angle 6=\angle 5$
Angles opposite equal sides are equal
(10) $\mathrm{AB} \| \mathrm{DC}$.
and BE is the transversal
$\therefore \angle 4=\angle 5$
Alternate angles.
(11) $\angle 4=\angle 6$

From (9) and (10)
$\therefore \mathrm{BE}$ is bisector of $\angle \mathrm{B}$
(12) $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$

Sum of co-interior angles is equal to $180^{\circ}(\mathrm{AD} \| \mathrm{BC})$
$\frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{~B}=\frac{180^{\circ}}{2}$ Multiplying both sides by $\frac{1}{2}$
$\angle 2+\angle 4=90^{\circ} \quad \mathrm{AE}$ is bisector of $\angle \mathrm{A}$ and BE is
bisector of $\angle \mathrm{B}$.
(13) In $\triangle \mathrm{APB}$,
$\angle \mathrm{AEB}+\angle 2+\angle 4=180^{\circ}$
$\Rightarrow \angle \mathrm{AEB}+90^{\circ}=180^{\circ}$ From (12)
$\Rightarrow \angle \mathrm{AEB}=180^{\circ}-90^{\circ}$
$\Rightarrow \angle \mathrm{AEB}=90^{\circ}$

(Q.E.D.)

Question 19.
$A B C D$ is a parallelogram, bisectors of angles A and B meet at E which lie on DC.
Prove that $A B$
Solution:

Given : ABCD is a parallelogram in which bisector of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ meets DC in E
To Prove: $A B=2 A D$
Proof:
Statements

Reasons

(1) In parallelogram ABCD
$A B \| D C$
$\angle 1=\angle 5$
(2) $\angle 1=\angle 2$
(3) $\angle 2=\angle 5$

In $\triangle \mathrm{AED}$,
$\mathrm{DE}=\mathrm{AD}$
(4) $\angle 3=\angle 6$
(5) $\angle 3=\angle 4$

Alternate angles ($\because \mathrm{AE}$ is transversal)
AE is bisector of
$\angle A$ (given)
From (1) and (2) equal angles have equal sides oppo--site to them.
Alternate angles
$[\because \mathrm{BE}$ is bisector of $\angle \mathrm{B}$
(given)]
(6) $\angle 4=\angle 6$
From (4) and (5)

In $\triangle \mathrm{BCE}$

$B C=E C$	equal angles have equal sides oppo-	
(7) $\mathrm{AD}=\mathrm{BC}$	opposite sides of II gm are equal.	
(8) $\mathrm{AD}=\mathrm{DE}=\mathrm{EC}$	From (3), (6) and (7)	
(9) $\mathrm{AB}=\mathrm{DC}$	opposite sides of $\\| \mathrm{gm}$ are equal.	
$. \mathrm{AB}=\mathrm{DE}+\mathrm{EC}$		
$A B=A D+A D$	From (8)	
$\mathrm{AB}=2 \mathrm{AD}$		

(Q.E.D.)

Question 20.
$A B C D$ is a square and the diagonals intersect at O. If P is a point on $A B$ such that $A O=A P$, prove that $3 \angle P O B=\angle A O P$.
Solution:

Given : $A B C D$ is a square and the diagonals intersect at O. P is a point on $A B$ such that
$\mathrm{AO}=\mathrm{AP}$.
To Prove: $3 \angle \mathrm{POB}=\angle \mathrm{AOP}$
Proof:
Statements

Reasons

(1) In square $A B C D A C$ In square diagonals
isadagonal: $\angle \mathrm{CAB}=45^{\circ}$ make 45° with side-
$\Rightarrow \angle \mathrm{OAP}=45^{\circ}$
(2) In $\triangle \mathrm{AOP}$.
$\angle \mathrm{OAP}=45^{\circ}$

$\mathrm{AO}=\mathrm{AP}$	From (1) equal side have a equal angles opposite to them.
$\therefore \angle \mathrm{AOP}+\angle \mathrm{APO}+\angle \mathrm{OAP}$ Sum of all angles in	
$=180^{\circ}$	a triangle is 180°
$\angle \mathrm{AOP}+\angle \mathrm{AOP}+45^{\circ}$	
$=180^{\circ}$	
$2 \angle \mathrm{AOP}=180^{\circ}-45^{\circ}$	
$\angle \angle \mathrm{AOP}=135^{\circ}$	

$$
\begin{aligned}
& \angle \mathrm{AOP}=\frac{135^{\circ}}{2} \\
& \text { (3) } \angle \mathrm{AOB}=90^{\circ} \quad \begin{array}{l}
\text { In square } \mathrm{ABCD} \\
\text { diagonals bisect at } \\
\text { right angles. }
\end{array} \\
& \Rightarrow \angle \mathrm{AOP}+\angle \mathrm{POB}=90^{\circ} \\
& \Rightarrow \frac{135^{\circ}}{2}+\angle \mathrm{POB}=90^{\circ} \quad \text { From (2) } \\
& \Rightarrow \angle \mathrm{POB}=90^{\circ}-\frac{135^{\circ}}{2} \\
& \Rightarrow \angle \mathrm{POB}=\frac{180^{\circ}-135^{\circ}}{2} \\
& \Rightarrow \angle \mathrm{POB}=\frac{45^{\circ}}{2} \quad \begin{array}{l}
\text { Multiplying both } \\
3 \angle \mathrm{POB}=\frac{135^{\circ}}{2} \quad \begin{array}{l}
\text { sides by } 3,
\end{array} \\
\text { (4) } \angle \mathrm{AOP}=3 \angle \mathrm{POB} \text { From (2) and (3) }
\end{array}
\end{aligned}
$$

(Q.E.D.)

Question 21.
$A B C D$ is a square. E, F, G and H are points on the sides $A B, B C, C D$ and $D A$ respectively such that $A E=B F=C G=D H$. Prove that $E F G H$ is a square.
Solution:

Given : ABCD is a square in which $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are points on $A B, B C, C D$ and $D A$

Such that $\mathrm{AE}=\mathrm{BF}=\mathrm{CG}=\mathrm{DH}$
EF, FG GH and HE are joined

To prove : EFGH is a square
Prove: $\because \mathrm{AE}=\mathrm{BF}=\mathrm{CG}=\mathrm{DH}$
$\therefore \mathrm{EB}=\mathrm{FC}=\mathrm{GD}=\mathrm{HA}$
Now in $\triangle \mathrm{AEH}$ and $\triangle \mathrm{BFE}$
$\mathrm{AE}=\mathrm{BF} \quad$ (given)
$A H=E B$
$\angle \mathrm{A}=\angle \mathrm{B}$
$\therefore \triangle \mathrm{AEH} \cong \triangle \mathrm{BFE}$
$\therefore \mathrm{EH}=\mathrm{EF}$
and $\angle 4=\angle 2$
(proved)
(each 90°)

But $\angle 1+\angle 4=90^{\circ}$
$\therefore \angle 1+\angle 2=90^{\circ}$
$(\because \angle 4=\angle 2)$
$\therefore \angle \mathrm{HEF}=90^{\circ}$
Hence EFGH is a square.
Hence proved.

Question 22.
(a) In the Figure (1) given below, $A B C D$ and $A B E F$ are parallelograms. Prove that (i) CDFE is a parallelogram
(ii) $\mathrm{FD}=\mathrm{EC}$
(iii) $\triangle \mathrm{AFD}=\triangle \mathrm{BEC}$.
(b) In the figure (2) given below, ABCD is a parallelogram, ADEF and AGHB are two squares. Prove that $\mathrm{FG}=\mathrm{AC}$
Solution:

(a) Given : ABCD and ABEF are $\| \mathrm{gms}$

To Prove :(i) CDEF is $\| \mathrm{gm}$
(ii) $\mathrm{FD}=\mathrm{EC}$
(iii) $\triangle \mathrm{AFD} \cong \triangle \mathrm{BEC}$

Proof:
Statements

Reasons

(1) $\mathrm{DC} \| \mathrm{AB}$ and $\mathrm{DC}=\mathrm{AB} \quad \mathrm{ABCD}$ is a \| gm
(2) $\mathrm{FE} \| \mathrm{AB}$ and $\mathrm{FE}=\mathrm{AB} \quad \mathrm{ABEF}$ is a $\| \mathrm{gm}$
(3) $\mathrm{DC} \| \mathrm{FE}$ and $\mathrm{DC}=\mathrm{FE} \quad$ From (1) and (2)
\therefore CDFE is a $\| \mathrm{gm}$
If a pair of opposite sides of a quadrilateral are parallel and equal
It is a $\| \mathrm{gm}$.
(4) CDFE is a Il gm opposite sides of
$\mathrm{FD}=\mathrm{EC}$
(5) In $\triangle \mathrm{AFD}$ and $\triangle \mathrm{BEC}$
$\mathrm{AD}=\mathrm{BC}$
$\mathrm{AF}=\mathrm{BE}$ Il gm CDFE are equal. opposite sides || gm ABCD are equal. opposite sides of llgm ABEF are equal.
$\mathrm{FD}=\mathrm{EC}$
$\therefore \triangle \mathrm{AFD} \cong \triangle \mathrm{BEC}$

From (4)
[By S.S.S. axiom of congruency]
(Q.E.D.)
(b) Given : $A B C D$ is a II gm, ADEF and AGHB are two squares.
To Prove : $\mathrm{FG}=\mathrm{AC}$
Proof:
Statements Reasons
(1) $\angle \mathrm{FAG}+90^{\circ}+90^{\circ}+\quad$ At a point total $\angle \mathrm{BAD}=36^{\circ} \quad$ angle is 360°
$\Rightarrow \angle \mathrm{FAG}=36^{\circ}-90^{\circ}-90^{\circ}$
$-\angle \mathrm{BAD}$
$\Rightarrow \angle \mathrm{FAG}=180^{\circ}-\angle \mathrm{BAD} \mathrm{ABCD}$ is a $\| \mathrm{gm}$
(2) $\angle \mathrm{B}+\angle \mathrm{BAD}=180^{\circ} \quad$ Sum of adjacent angle in lgm is equal to 180°
$\Rightarrow \angle \mathrm{B}=180^{\circ}-\angle \mathrm{BAD}$
(3) $\angle \mathrm{FAG}=\angle \mathrm{B} \quad$ From (1) and (3)
(4) In $\triangle A F G$ and $\triangle A B C \quad F A D E$ and $A B C D$.

$$
\mathrm{AF}=\mathrm{BC}
$$

both are square on the same base DA.
Similarly $A G=A B$
$\angle \mathrm{FAG}=\angle \mathrm{B}$
From (3)
$\therefore \triangle \mathrm{AFG} \cong \triangle \mathrm{ABC}$
[By S.A.S. axiom of congruency]
$\therefore \mathrm{FG}=\mathrm{AC}$
[c.p.c.t.]
(Q.E.D.)

Question 23.
$A B C D$ is a rhombus in which $\angle A=60^{\circ}$. Find the ratio $A C$: $B D$.
Solution:

Let each side of the rhombus $\mathrm{ABCD}=a$
$\because \angle A=60^{\circ}$

$\therefore \triangle \mathrm{ABD}$ is an equilateral triangle

$$
\therefore \quad \mathrm{BD}=\mathrm{AB}=a
$$

\because The diagonals of a rhombus bisect each other at right angles,
\therefore In right $\triangle \mathrm{AOB}$,

$$
\mathrm{AO}^{2}+\mathrm{OB}^{2}=\mathrm{AB}^{2}
$$

$\Rightarrow \mathrm{AO}^{2}=\mathrm{AB}^{2}-\mathrm{OB}^{2}=a^{2}-\left(\frac{1}{2} a\right)^{2}$

$$
=a^{2}-\frac{a^{2}}{4}=\frac{3}{4} a^{2}
$$

$$
\therefore \quad \mathrm{AO}=\sqrt{\frac{3}{4}} a^{2}=\frac{\sqrt{3}}{2} a
$$

But

$$
\mathrm{AC}=2 \mathrm{AO}=2 \times \frac{\sqrt{3}}{2} a=\sqrt{3} a
$$

Now

$$
\mathrm{AC}: \mathrm{BD}=\sqrt{3} a: a=\sqrt{3}: 1
$$

Exercise 13.2

Question 1.
Using ruler and compasses only, construct the quadrilateral ABCD in which \angle $B A D=45^{\circ}, A D=A B=6 \mathrm{~cm}, B C=3.6 \mathrm{~cm}, C D=5 \mathrm{~cm}$. Measure $\angle B C D$.
Solution:

Steps of construction :

(i) draw a line segment $\mathrm{AB}=6 \mathrm{~cm}$

(ii) At A, draw a ray AX making an angle of 45° and cut off $\mathrm{AD}=6 \mathrm{~cm}$
(iii) With centre B and radius 3.6 cm , and with centre D and radius 5 cm , draw two arcs intersecting each other at C .
(iv) Join BC and DC ,

ABCD is the required quadrilateral.
On measuring $\angle \mathrm{BCD}$, it is 60°.

Question 2.

Draw a quadrilateral $A B C D$ with $A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}, C D=4 \mathrm{~cm}$ and $\angle A B C=\angle$ $B C D=90^{\circ}$

Solution:

Steps of construction :
(i) Draw a line segment $\mathrm{BC}=4 \mathrm{~cm}$.
(ii) At B and C draw rays BX and CY making
an angle of 90° each

(iii) From BX , cut off $\mathrm{BA}=6 \mathrm{~cm}$ and from

CY, cut off $C D=4 \mathrm{~cm}$
(iv) Join AD,

ABCD is the required quadrilateral

Question 3.
Using ruler and compasses only, construct the quadrilateral $A B C D$ given that $A B$ $=5 \mathrm{~cm}, \mathrm{BC}=2.5 \mathrm{~cm}, \mathrm{CD}=6 \mathrm{~cm}, \angle \mathrm{BAD}=90^{\circ}$ and the diagonal $\mathrm{AC}=5.5 \mathrm{~cm}$.
Solution:

Steps of construction :

(i) Draw a line seginent $\mathrm{AB}=5 \mathrm{~cm}$.
(ii) With centre A and radius 5.5 cm and with centre B and radius 2.5 cm draw arcs which intersect each other at C .
(iii) Join AC and BC.

(iv) at A, draw a ray AX making an angle of 90°.
(v) With centre C and radius 6 cm , draw an arc intersecting AX at D
(v) Join CD

ABCD is the required quadrilateral.

Question 4.
Construct a quadrilateral ABCD in which $\mathrm{AB}=3.3 \mathrm{~cm}, \mathrm{BC}=4.9 \mathrm{~cm}, \mathrm{CD}=5.8 \mathrm{~cm}$, $D A=4 \mathrm{~cm}$ and $B D=5.3 \mathrm{~cm}$.
Solution:

Steps of construction :

(i) Draw a line segment $\mathrm{AB}=3.3 \mathrm{~cm}$
(ii) With centre A and radius 4 cm , and with centre B and radius 5.3 cm , draw ares intersecting each other at D.

(iii) Join AD and BD .
(iv) With centre B and radius 4.9 cm and with centre D and radius 5.8 cm , draw arcs intersecting each other at C .
(v) Join BC and DC.

ABCD is the required quadrilateral.

Question 5.
Construct a trapezium $A B C D$ in which $A D|\mid B C, A B=C D=3 \mathrm{~cm}, B C=5.2 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$

Solution:

Steps of construction :

(i) Draw a line segment $\mathrm{BC}=5.2 \mathrm{~cm}$
(ii) From BC , cut off $\mathrm{BE}=\mathrm{AD}=4 \mathrm{~cm}$
(iii) With centre E and C , and radius 3 cm , draw arcs intersecting each other at D .

(iv) Join ED and CD.
(v) With centre D and radius 4 cm and with centre B and radius 3 cm , draw arcs intersecting each other at A .
(vi) Join BA and DA.

ABCD is the required trapezium.

Question 6.

Construct a trapezium $A B C D$ in which $A D \| B C, \angle B=60^{\circ}, A B=5 \mathrm{~cm} . B C=6.2 \mathrm{~cm}$ and $C D=4.8 \mathrm{~cm}$.
Solution:

Steps of construction.

(i) Draw a line segment $\mathrm{BC}=6.2 \mathrm{~cm}$.
(ii) At B , draw a ray BX making an angle of
60° and cut off $A B=5 \mathrm{~cm}$.
(iii) From A, draw a line AY parallel to BC.

(iv) With centre C and radius 4.8 cm , draw an arc which intersects AY at D and D^{\prime}.
(v) Join CD and CD'

Then ABCD and ABCD ' are the required two trapezium.

Question 7.

Using ruler and compasses only, construct a parallelogram $A B C D$ with $A B=5.1$ $\mathrm{cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\angle \mathrm{ABC}=75^{\circ}$.

Solution:

Steps of construction.

(i) Draw a line segment $\mathrm{BC}=7 \mathrm{~cm}$.
(ii) A to B , draw a ray $\mathrm{B} x$ making an angle of 75° and cut off $\mathrm{AB}=5.1 \mathrm{~cm}$.
(iii) With centre A and radius 7 cm with centre C and radius 5.1 cm , draw arcs intersecting eacl other at D.
(iv) Join AD and $C D$.
$A B C D$ is the required parallelogram.

Question 8.
Using ruler and compasses only, construct a parallelogram $A B C D$ in which $A B=$ $4.6 \mathrm{~cm}, \mathrm{BC}=3.2 \mathrm{~cm}$ and $\mathrm{AC}=6.1 \mathrm{~cm}$.

Solution:

(i) Draw a line segment $\mathrm{AB}=4.6 \mathrm{~cm}$
(ii) With centre A and raduis 6.1 cm and with centre B and raduis 3.2 cm , draw arcs intersecting each other at C .
(iii) Join AC and BC.
(iv) Again with centre A and raduis 3.2 cm and with centre C and raduis 4.6 cm , draw arcs intersecting each other at D .
(v) Join $A D$ and $C D$.

Then $A B C D$ is the required parallelogram.

Question 9.
Using ruler and compasses, construct a parallelogram $A B C D$ give that $A B=4 \mathbf{c m}$, $A C=10 \mathrm{~cm}, B D=6 \mathrm{~cm}$. Measure BC.

Solution:
Given : $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \mathrm{BD}=6 \mathrm{~cm}$
Required : (i) To construct a parallelogram ABCD .
(ii) Length of BC.

Steps of Construction :

1. Construct triangle OAB such that
$\mathrm{OA}=\frac{1}{2} \times \mathrm{AC}=\frac{1}{2} \times 10 \mathrm{~cm}=5 \mathrm{~cm}$
$\mathrm{OB}=\frac{1}{2} \times \mathrm{BD}=\frac{1}{2} \times 6 \mathrm{~cm}=3 \mathrm{~cm}$
(Since diagonals of II gm bisect each other) and AB $=4 \mathrm{~cm}$.
2. Produce AO to C such that $\mathrm{OA}=\mathrm{OC}=5 \mathrm{~cm}$
3. Produce BO to D such that $\mathrm{OB}=\mathrm{OD}=3 \mathrm{~cm}$
4. Join $A D, B C$, and $C D$.
5. ABCD is the required parallelogram.
6. Measure BC which is equal to 7.2 cm .

Question 10.
Using ruler and compasses only, construct a parallelogram $A B C D$ such that $B C=$ 4 cm , diagonal $A C=8.6 \mathrm{~cm}$ and diagonal $B D=4.4 \mathrm{~cm}$. Measure the side $A B$.

Solution:

Given : $\mathrm{BC}=4 \mathrm{~cm}$, diagonal $\mathrm{AC}=8.6 \mathrm{~cm}$ and diagonal $\mathrm{BP}=4.4 \mathrm{~cm}$
Required : (i) To construct a parallelogram
(ii) Measurement the side AB .

Steps of Construction :

1. Construct triangle OBC such that
$\mathrm{OB}=\frac{1}{2} \times \mathrm{BD}=\frac{1}{2} \times 4.4 \mathrm{~cm}=2.2 \mathrm{~cm}$
$\mathrm{OC}=\frac{1}{2} \times \mathrm{AC}=\frac{1}{2} \times 8.6 \mathrm{~cm}=4.3 \mathrm{~cm}$
(Since diagonals of $\| \mathrm{gm}$ bisect each other) and
$\mathrm{BC}=4 \mathrm{~cm}$
2. Produce BO to D such that $\mathrm{BO}=\mathrm{OD}=2.2 \mathrm{~cm}$
3. Produce CO to A such that $\mathrm{CO}=\mathrm{OA}=4.3 \mathrm{~cm}$
4. Join $A B, A D$ and $C D$
5. ABCD is the required parallelogram
6. Measure the side $\mathrm{AB}, \mathrm{AB}=5.6 \mathrm{~cm}$

Question 11.

Use ruler and compasses to construct a parallelogram with diagonals 6 cm and 8 cm in length having given the acute angle between them is 60°. Measure one of the longer sides.
Solution:

Given : Diagonal $\mathrm{AC}=6 \mathrm{~cm}$. Diagonal $\mathrm{BD}=8 \mathrm{~cm}$
Angle between the diagonals $=60^{\circ}$
Required : (i) To construct a parallelogram.
(ii) To measure one of longer side.

Steps of Construction :

1. Draw $A C=6 \mathrm{~cm}$.
2. Find the mid-point O of $A C$.
(\therefore Diagonals of 11 gm bisect each other)
3. Draw line POQ such that $\angle \mathrm{POC}=60^{\circ}$ and
$\mathrm{OB}=\mathrm{OD}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 8 \mathrm{~cm}=4 \mathrm{~cm}$.
\therefore From OP cut $O D=4 \mathrm{~cm}$ and from OQ cut $\mathrm{OB}=4 \mathrm{~cm}$.
4. Join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA .
5. ABCD is the required parallelogram.
6. Measure the length of side $\mathrm{AD}=6.1 \mathrm{~cm}$.

Question 12.

Using ruler and compasses only, draw a parallelogram whose diagonals are 4 cm and 6 cm long and contain an angle of 75°. Measure and write down the length of one of the shorter sides of the parallelogram.
Solution:

Steps of construction :

(i) Draw a line segment $\mathrm{AC}=6 \mathrm{~cm}$.
(ii) Bisect AC at O .
(iii) At O , draw a ray XY making an angle of 75° at O .
(iv) From OX and OY , cut off $\mathrm{OD}=\mathrm{OB}=$
$\frac{4}{2}=2 \mathrm{~cm}$

(v) Join AB, BC, CD and DA

Then ABCD is the required parallelogram
On measuring one of the shorter sides,

$$
\mathrm{AB}=\mathrm{CD}=3 \mathrm{~cm} .
$$

Question 13.

Using ruler and compasses only, construct a parallelogram $A B C D$ with $A B=6$ cm , altitude $=3.5 \mathrm{~cm}$ and side $B C=4 \mathrm{~cm}$. Measure the acute angles of the parallelogram.

Solution:

Given : $\mathrm{AB}=6 \mathrm{~cm}$ Altitude $=3.5 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$.
Required : (i) To construct a parallelogram ABCD .
(ii) To measure the acute angle of parallelogram.

Steps of Construction :

1. Draw $A B=6 \mathrm{~cm}$.
2. At B, draw $\mathrm{BP} \perp \mathrm{AB}$.
3. From $\mathrm{BP}, \operatorname{cut} \mathrm{BE}=3.5 \mathrm{~cm}=$ height of $\| \mathrm{gm}$.
4. Through E draw QR parallel to AB .
5. With B as centre and radius $\mathrm{BC}=4 \mathrm{~cm}$ draw an arc which cuts QR at C .
6. Since opposite sides of \| gm are equal
$\therefore \mathrm{AD}=\mathrm{BC}=4 \mathrm{~cm}$.
\therefore With A as centre and radius $=4 \mathrm{~cm}$ draw an arc which cut QR at D .
7. $\therefore \mathrm{ABCD}$ is the required parallelogram.
8. To measure the acute angle of parallelogram which is equal to 61°.

Question 14.

The perpendicular distances between the pairs of opposite sides of a parallelogram $A B C D$ are 3 cm and 4 cm and one of its angles measures 60°. Using ruler and compasses only, construct ABCD.
Solution:

Given: $\angle \mathrm{BAD}=60^{\circ}$
height be 3 cm and 4 cm from AB and BC respectively (say)
Required : To construct a parallelogram ABCD .

Steps of Construction :

1. Draw a st. line $P Q$, take a point A on it.
2. At A, construct $\angle \mathrm{QAF}=60^{\circ}$.
3. At A , draw $\mathrm{AE} \perp \mathrm{PQ}$ from AE cut off $\mathrm{AN}=3 \mathrm{~cm}$
4. Through N draw a st. line parallel to $P Q$ to meet AF at D .
5. At A, draw $A G \perp A D$, from $A G$ cut off $A M=4 \mathrm{~cm}$.
6. Through M , draw a st. line parallel to AD to meet AQ in B and ND in C . Then ABCD is the required parallelogram.

Question 15.
Using ruler and compasses, construct a rectangle $A B C D$ with $A B=5 \mathrm{~cm}$ and $A D=$ 3 cm .

Solution:
Steps of construction :

1. Draw a st. line $\mathrm{AB}=5 \mathrm{~cm}$
2. At A and B construct $\angle \mathrm{XAB}$ and $\angle \mathrm{YBA}=90^{\circ}$.
3. From A and B cut off $A C$ and $B D=3 \mathrm{~cm}$ each
4. Join CD
5. ABCD is the required rectangle

Question 16.
Using ruler and compasses only, construct a rectangle each of whose diagonals measures 6 cm and the diagonals intersect at an angle of 45°.
Solution:
Steps of construction.
(i) Draw a line segment $\mathrm{AC}=6 \mathrm{~cm}$
(ii) Bisect it at O
(iii) At O , draw a ray XY making an angle
of 45° at O .
(iv) From XY, cut off
$\mathrm{OB}=\mathrm{OD}=\frac{6}{2}=3 \mathrm{~cm}$ each
(v) Join AB, BC, CD and DA

Then $A B C D$ is the required rectangle.

Question 17.

Using ruler and compasses only, construct a square having a diagonal of length 5 cm . Measure its sides correct to the nearest millimeter.

Solution:

Steps of construction :
(i) Draw a line segment $\mathrm{AC}=5 \mathrm{~cm}$
(ii) Draw its perpendicular bisector XY bisecting it at O

(iii) From XY, cut off

$$
\mathrm{OB}=\mathrm{OD}=\frac{5}{2}=2.5 \mathrm{~cm}
$$

(iv) Join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA.

ABCD is the required square
On measuring its sides,
each side $=3.6 \mathrm{~cm}$ (approximately)

Question 18.

Using ruler and compasses only construct A rhombus $A B C D$ given that $A B 5 c m$, $A C=6 \mathrm{~cm}$ measure $\angle B A D$.

Solution:
Steps of construction.
(i) Draw a line segment $\mathrm{AB}=5 \mathrm{~cm}$

(ii) With centre A and radius 6 cm , with centre B and radius 5 cm , draw arcs intersecting each other at C.
(iii) Join AC and BC
(iv) With centre A and C and radius 5 cm , draw arcs intersecting eachother at D
(v) Join AD and CD.

Then ABCD is a rhombus
On measuring, $\angle \mathrm{BAD}=106^{\circ}$

Question 19.
Using ruler and compasses only, construct rhombus ABCD with sides of length 4 cm and diagonal $A C$ of length 5 cm . Measure $\angle A B C$.
Solution:

Steps of construction :

(i) Draw a line segment $\mathrm{AC}=5 \mathrm{~cm}$
(ii) With centre A and C and radius 4 cm , draw arcs intersecting each other above and below AC at D and B .
(iii) Join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA
$A B C D$ is the required rhombus.

Question 20.
Construct a rhombus PQRS whose diagonals PR and QS are 8cip and 6cm respectively.
Solution:

Steps of construction :

(i) Draw a line segment $\mathrm{PR}=8 \mathrm{~cm}$
(ii) Draw its perpendicular bisector XY intersecting it at O .
(iii) From XY, cut off $O Q=O S$

$$
=\frac{6}{2}=3 \mathrm{~cm} \text { each. }
$$

(iv) Join $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP

Then PQRS is the required rhombus.

Question 21.
Construct a rhombus $A B C D$ of side 4.6 cm and $\angle B C D=135^{\circ}$, by using ruler and compasses only.

Solution:

Steps of construction :

(i) Draw a line segment $\mathrm{BC}=4.6 \mathrm{~cm}$.
(ii) At C , draw a ray CX making an angle of 135° and cut off $\mathrm{CD}=4.6 \mathrm{~cm}$.

(iii) With centres B and D , and radius 4.6 cm draw arcs intersecting each other at A .
(iv) Join BA, DA

Then $A B C D$ is the required rhombus.

Question 22.

Construct a trapezium in which $A B\left|\mid C D, A B=4.6 \mathrm{~cm}, \angle A B C=90^{\circ}, \angle D A B=120^{\circ}\right.$ and the distance between parallel sides is 2.9 cm .
Solution:

Steps of construction :

(i) Draw a line segment $\mathrm{AB}=4.6 \mathrm{~cm}$
(ii) At B , draw a ray BZ making an angle of 90° and cut off $\mathrm{BC}=2.9 \mathrm{~cm}$ (distance between AB and CD)

(iii) At C, draw a parallel line XY to AR .
(iv) At A, draw a ray making an angle of 120° meeting XY at D .
Then ABCD is the required trapezium.

Question 23.
Construct a trapezium ABCD when one of parallel sides $\mathrm{AB}=4.8 \mathrm{~cm}$, height $=$ $2.6 \mathrm{~cm}, \mathrm{BC}=3.1 \mathrm{~cm}$ and $\mathrm{AD}=3.6 \mathrm{~cm}$.

Solution:
Steps of construction :
(i) Draw a line segment $\mathrm{AB}=4.8 \mathrm{~cm}$

(ii) At A draw a ray AZ making an angle of 90° and cut off $\mathrm{AL}=2.6 \mathrm{~cm}$.
(iii) At L, draw a line XY parallel to AB .
(iv) With centre A and radius 3.6 cm and with centre B and radius 3.1 cm , draw arcs intersecting XY at D and C respectively.
(iv) Join AD, BC

Then ABCD is the required trapezium.

Question 24.
Construct a regular hexagon of side 2.5 cm .
Solution:

Given : Each side of regular Hexagon =
2.5 cm

Required : To construct a regular Hexagon.

Steps of Construction :

1. With O as centre and radius $=2.5 \mathrm{~cm}$, draw a circle.
2. Take any point A on the circumference of circle.
3. With A as centre and radius equal to 2.5 cm , draw an arc which cuts the circumference in B.
4. With B as centre and radius $=2.5 \mathrm{~cm}$, draw an arc which circumference of circle at C .
5. With C as centre and radius $=2.5 \mathrm{~cm}$ draw an arc which cuts circumference of circle at D .
6. With D as centre and radius $=2.5 \mathrm{~cm}$ draw an arc which cuts circumference of circle at E .
7. With E as centre and radius $=2.5 \mathrm{~cm}$ draw an arc which cuts circumference of circle at F .
8. Join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}$ and $F A$.
9. ABCDEF is the required Hexagon.

Multiple Choice Questions

Choose the correct answer from the given four options (1 to 12):
Question 1.
Three angles of a quadrilateral are $75^{\circ}, 90^{\circ}$ and 75°. The fourth angle is
(a) 90°
(b) 95°
(c) 105°
(d) 120°

Solution:
Sum of 4 angles of a quadrilateral $=360^{\circ}$ Sum of three angles $=75^{\circ}+90^{\circ}+75^{\circ}=240^{\circ}$
Fourth angle $=360^{\circ}-240^{\circ}=120^{\circ}$ (d)

Question 2.
A quadrilateral $A B C D$ is a trapezium if
(a) $A B=D C$
(b) $A D=B C$
(c) $\angle A+\angle C=180^{\circ}$
(d) $\angle B+\angle C=180^{\circ}$

Solution:
A quadrilateral $A B C D$ is a trapezium if $\angle B+\angle C=180^{\circ}$
(Sum of co-interior angles) (d)

Question 3.
If $P Q R S$ is a parallelogram, then $\angle Q-\angle S$ is equal to
(a) 90°
(b) 120°
(c) 0°
(d) 180°

Solution:
$P Q R S$ is a parallelogram $\angle Q-\angle S=0$
(\because Opposite angles of a parallelogram, are equal) (c)

Question 4.
A diagonal of a rectangle is inclined to one side of the rectangle at 25°. The acute angle between the diagonals is
(a) 55°
(b) 50°
(c) 40°
(d) 25°

Solution:
In a rectangle a diagonal is inclined to one side of the rectangle is 25°

i.e. $\angle \mathrm{OAB}=25^{\circ}$

But $\mathrm{OA}=\mathrm{OB}$
$\therefore \angle \mathrm{OBA}=25^{\circ}$
But Ext. $\angle \mathrm{COB}=\angle \mathrm{OAB}+\angle \mathrm{OBA}$
$=25^{\circ}+25^{\circ}=50^{\circ}$

Question 5.
$A B C D$ is a rhombus such that $\angle A C B=40^{\circ}$. Then $\angle A D B$ is
(a) 40°
(b) 45°
(c) 50°
(d) 60°

Solution:

Question 6.
The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If $\angle D A C=32^{\circ}$ and $\angle A O B=70^{\circ}$, then $\angle D B C$ is equal to
(a) 24°
(b) 86°
(c) 38°
(d) 32°

Solution:
Diagonals $A C$ and $B D$ of parallelogram $A B C D$ intersect each other at O

$\angle \mathrm{DAC}=32^{\circ}, \angle \mathrm{AOB}=70^{\circ}$
$\angle \mathrm{ADO}=70^{\circ}-32^{\circ} \quad\left(\because\right.$ Ext. $\left.\angle \mathrm{AOB}=70^{\circ}\right)$
$=38^{\circ}$
But $\angle \mathrm{DBC}=\angle \mathrm{ADO}$ or $\angle \mathrm{ADB}$
(Alternate angles)
$\therefore \angle \mathrm{DBC}=38^{\circ}$

Question 7.
If the diagonals of a square $A B C D$ intersect each other at 0 , then $\triangle O A B$ is
(a) an equilateral triangle
(b) a right angled but not an isosceles triangle
(c) an isosceles but not right angled triangle
(d) an isosceles right angled triangle

Solution:

Diagonals of square $A B C D$ intersect each other at O
(\because Diagonals of a square bisect each other at right angles)
$\left(\because \angle \mathrm{AOB}=90^{\circ}\right.$ and $\left.\mathrm{AO}=\mathrm{BO}\right)$

$\triangle \mathrm{OAB}$ is an isosceles.

Question 8.
If the diagonals of a quadrilateral PQRS bisect each other, then the quadrilateral PQRS must be a
(a) parallelogram
(b) rhombus
(c) rectangle
(d) square

Solution:
Diagonals of a quadrilateral PQRS bisect each other, then quadrilateral must be a parallelogram.
(\because A rhombus, rectangle and square are also parallelogram) (a)

Question 9.

If the diagonals of a quadrilateral PQRS bisect each other at right angles, then the quadrilateral PQRS must be a
(a) parallelogram
(b) rectangle
(c) rhombus
(d) square

Solution:
Diagonals of quadrilateral PQRS bisect each other at right angles, then quadrilateral PQRS [must be a rhombus.
$\left(\because\right.$ Square is also a rhombus with each angle equal to 90°) (c)

Question 10.
Which of the following statement is true for a parallelogram?
(a) Its diagonals are equal.
(b) Its diagonals are perpendicular to each other.
(c) The diagonals divide the parallelogram into four congruent triangles.
(d) The diagonals bisect each other.

Solution:
For a parallelogram an the statement 'The diagoanls bisect each other' is true. (d)

Question 11.

Which of the following is not true for a parallelogram?
(a) opposite sides are equal
(b) opposite angles are equal
(c) opposite angles are bisected by the diagonals
(d) diagonals bisect each other

Solution:

The statement that in a parallelogram, .the opposite angles are bisected by the diagonals, is not true in each case. (c)

Question 12.

A quadrilateral in which the diagonals are equal and bisect each other at right angles is a
(a) rectangle which is not a square
(b) rhombus which is not a square
(c) kite which is not a square
(d) square

Solution:
In a quadrilateral, if diagonals are equal and bisect each other at right angles, is a square. (d)

Chapter Test

Question P.Q.

The interior angles of a polygon add upto 4320°. How many sides does the polygon have?
Solution:
Sum of interior angles of a polygon
$=(2 n-4) \times 90^{\circ}$
$\Rightarrow 4320^{\circ}=(2 n-4) \times 90^{\circ}$
$\Rightarrow \frac{4320^{\circ}}{90^{\circ}}=(2 n-4) \Rightarrow \frac{432}{9}=2 n-4$
$\Rightarrow 48=2 n-4 \Rightarrow 48+4=2 n \Rightarrow 52=2 n$
$\Rightarrow 2 n=52 \Rightarrow n=\frac{52}{2}=26$
Hence, the polygon have 26 sides.

Question P.Q.
If the ratio of an interior angle to the exterior angle of a regular polygon is 5:1, find the number of sides.
Solution:
The ratio of an interior angle to the exterior
angle of a regular polygon $=5: 1$

$$
\begin{aligned}
& \Rightarrow \quad \frac{(2 n-4) \times 90^{\circ}}{n}: \frac{360}{n}=5: 1 \\
& \Rightarrow \quad(2 n-4) \times 90^{\circ}: 360=5: 1 \\
& \Rightarrow \quad \frac{(2 n-4) \times 90^{\circ}}{360}=\frac{5}{1} \Rightarrow \quad \frac{2 n-4}{4}=\frac{5}{1} \\
& \Rightarrow \quad 2 n-4=5 \times 4 \Rightarrow 2 n-4=20 \\
& \Rightarrow \quad 2 n=20+4 \Rightarrow 2 n=24 \Rightarrow n=\frac{24}{2} \\
& \Rightarrow \quad n=12 \\
& \text { Hence, number of sides of regular polygon }=12 .
\end{aligned}
$$

Solution:
$\because B C \| E D$
$\therefore \angle \mathrm{C}+\angle \mathrm{D}=180^{\circ} \quad$ (Co-interior angles)
But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}=540^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{E} \neq 180^{\circ}=540^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{E}=540^{\circ}-180^{\circ}=360^{\circ}$
But $\quad \angle \mathrm{B}: \angle \mathrm{A}=\angle \mathrm{E}=3: 4: 5$
Let $\quad \angle \mathrm{B}=3 x, \angle \mathrm{~A}=4 x$ and $\angle \mathrm{E}=5 x$

$\therefore 3 x+4 x+5 x=360^{\circ} \Rightarrow 12 x=360^{\circ}$
$\Rightarrow x=\frac{360^{\circ}}{12}=30^{\circ}$
$\therefore \mathrm{A}=4 x=4 \times 30^{\circ}=120^{\circ}$ Ans.

Question 1.

In the given figure, $A B C D$ is a parallelogram. $C B$ is produced to E such that $B E=B C$. Prove that AEBD is a parallelogram.

Solution:
In the figure, ABCD is a $\| g m$ side $C B$ is produced to E such that $\mathrm{BE}=\mathrm{BC}$
$B D$ and $A E$ are joined
To prove : AEBD is a parallelogram
Proof: In $\triangle A E B$ and $\triangle B D C$
$\mathrm{EB}=\mathrm{BC}$
(Given)
$\angle \mathrm{ABE}=\angle \mathrm{DCB} \quad$ (Corresponding angles)
$\mathrm{AB}=\mathrm{DC} \quad$ (Opposite sides of $\| \mathrm{gm}$)
$\therefore \triangle \mathrm{AEB} \cong \triangle \mathrm{BDC}$
(SAS axiom)
$\therefore \mathrm{AE}=\mathrm{DB}$
(c.p.c.t.)

But $\mathrm{AD}=\mathrm{CB}=\mathrm{BE}$
(Given)
\because The opposite sides are equal and $\angle \mathrm{AEB}=$ $\angle \mathrm{DBC}$
(c.p.c.t.)

But these are corresponding angle
\therefore AEBD is a parallelogram

Question 2.
In the given figure, $A B C$ is an isosceles triangle in which $A B=A C$. $A D$ bisects exterior angle PAC and CD || BA. Show that
(i) $\angle D A C=\angle B C A$
(ii) $A B C D$ is a parallelogram.

Solution:
Given: In isosceles $\triangle A B C, A B=A C$.
AD is the bisector of ext. $\angle \mathrm{PAC}$ and
$C D \| B A$

To prove : $(i) \angle \mathrm{DAC}=\angle \mathrm{BCA}$
(ii) ABCD is a $\| \mathrm{gm}$

Proof: In $\triangle A B C$
$\because \mathrm{AB}=\mathrm{AC}$
(Given)
$\therefore \angle C=\angle B$
(Angles opposite to equal sides)
\because Ext. $\angle \mathrm{PAC}=\angle \mathrm{B}+\angle \mathrm{C}$
$=\angle \mathrm{C}+\angle \mathrm{C}=2 \angle \mathrm{C}=2 \angle \mathrm{BCA}$
$\therefore 2 \angle \mathrm{DAC}=2 \angle \mathrm{BCA}$
$\angle \mathrm{DAC}=\angle \mathrm{BCA}$
But these are alternate angles
$\therefore A D \| B C$
But AB \|AC
(Given)
$\therefore \mathrm{ABCD}$ is a $\| \mathrm{gm}$

Question 3.
Prove that the quadrilateral obtained by joining the mid-points of an isosceles trapezium is a rhombus.
Solution:

Given. ABCD is an isosceles trapezium in which $A B \| D C$ and $A D=B C$
P, Q, R and S are the mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively PQ , QR, RS and SP are joined.

To Prove. PQRS is a rhombus.
Constructions. Join AC and BD.
Proof. $\because \mathrm{ABCD}$ is an isosceles trapezium
\therefore Its diagnoals are equal
$\therefore \quad \mathrm{AC}=\mathrm{BD}$
Now in $\triangle \mathrm{ABC}$,
P and Q are the mid-points of $A B$ and $B C$
$\therefore \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
Similarly in $\triangle \mathrm{ADC}$,
S and R mid-points of $C D$ and $A D$
$\therefore \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
from (i) ${ }^{\prime}$ and (ii)
$P Q|\mid S R$ and $P Q=S R$
$\therefore \mathrm{PQRS}$ is a parallelogram
Now in $\triangle A P S$ and $\triangle B P Q$,

$$
\mathrm{AP}=\mathrm{BP} \quad(\mathrm{P} \text { is mid-point of } \mathrm{AB})
$$

$$
\begin{array}{cc}
\mathrm{AS}=\mathrm{BQ} \quad & (\text { Half of equal sides }) \\
\angle \mathrm{A}=\angle \mathrm{B} \\
(\because \mathrm{ABCD} \text { is isosceles trapezium) } \\
\because & \triangle \mathrm{APS} \cong \mathrm{BPQ} \\
\therefore & \mathrm{PS}=\mathrm{PQ}
\end{array}
$$

But there are the adjacent sides of a parallelogram
\therefore Sides of PQRS are equal
Hence PQRS is a rhombus.
Hence proved.

Question 4.
Find the size of each lettered angle in the Following Figures.

Solution:
(i) $\because \mathrm{CDE}$ is a st. line
$\therefore \quad \angle \mathrm{ADE}+\angle \mathrm{ADC}=180^{\circ}$

$122^{\circ}+\angle \mathrm{ADC}=180^{\circ}$
$\angle \mathrm{ADC}=180^{\circ}-122^{\circ \circ}$
$\angle \mathrm{ADC}=58^{\circ}$
$\angle \mathrm{ABC}=360^{\circ}-140^{\circ}=220^{\circ}$
(At any point the angle is 360°)
Now, in quadrilateral $A B C D$,

$$
\begin{aligned}
& \angle \mathrm{ADC}+\angle \mathrm{BCD}+\angle \mathrm{BAD}+\angle \mathrm{ABC}=360^{\circ} \\
& \Rightarrow 58^{\circ}+53^{\circ}+x+220^{\circ}=360^{\circ} \\
& \quad \text { [using (1) and (2)] } \\
& \Rightarrow \quad 331^{\circ}+x=360^{\circ} \Rightarrow x=360^{\circ}-331^{\circ} \\
& \Rightarrow \quad x=29^{\circ} \text { Ans. } \\
& \text { (ii) } \because \mathrm{DE} \| \mathrm{AB} \\
& \therefore \quad \angle \mathrm{ECB}=\angle \mathrm{CBA} \\
& \Rightarrow \quad \text { (given) } \\
& \Rightarrow \quad 75^{\circ}=\angle \mathrm{CBA} \\
& \therefore \quad \angle \mathrm{CBA}=75^{\circ}
\end{aligned}
$$

$\because \quad \mathrm{AD} \| \mathrm{BC}$

> (given)
$\therefore \quad\left(x+66^{\circ}\right)+\left(75^{\circ}\right)=180^{\circ}$
(co-interior angles are supplementary)
$\Rightarrow x+66^{\circ}+75^{\circ}=180^{\circ} \Rightarrow x+141^{\circ}=180^{\circ}$
$\Rightarrow x=180^{\circ}-141^{\circ}$
$\therefore x=39^{\circ}$
Now, in $\triangle \mathrm{AMB}$,

Now, in $\triangle \mathrm{AMB}$,

$$
\begin{aligned}
& x+30^{\circ}+\angle \mathrm{AMB}=180^{\circ} \\
& \\
& \quad \text { (sum of all angles in a triangle is } 180^{\circ} \text {) } \\
& \Rightarrow \quad 39^{\circ}+30^{\circ}+\angle \mathrm{AMB}=180^{\circ} \quad[\text { From (1)] } \\
& \Rightarrow \quad 69^{\circ}+\angle \mathrm{AMB}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{AMB}=180^{\circ}-69^{\circ} \\
& \Rightarrow \quad \angle \mathrm{AMB}=111^{\circ} \\
& \because \quad \angle \mathrm{AMB}=y \quad \\
& \Rightarrow \quad 111^{\circ}=y \quad \text { (vertically opposite angles) } \\
& \therefore \quad y=111^{\circ} \quad[\text { From (2)] }
\end{aligned}
$$

Hence, $x=39^{\circ}$ and $y=111^{\circ}$
(iii) In $\triangle \mathrm{ABD}$

(Sum of all angles in a triangle is 180°)
$\Rightarrow 42^{\circ}+42^{\circ}+y=180^{\circ} \Rightarrow 84^{\circ}+y=180^{\circ}$
$\Rightarrow y=180^{\circ}-84^{\circ} \Rightarrow y=96^{\circ}$
$\angle \mathrm{BCD}=2 \times 26^{\circ}=52^{\circ}$
In $\angle \mathrm{BCD}$
$\because \quad \mathrm{BC}=\mathrm{CD}$ (given)
$\therefore \quad \angle \mathrm{CBD}=\angle \mathrm{CDB}=x$
[equal side have equal angles opposite to them]
$\therefore \quad \angle \mathrm{CBD}+\angle \mathrm{CDB}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow x+x+52^{\circ}=180^{\circ} \Rightarrow 2 x=180^{\circ}-52^{\circ}$
$\Rightarrow 2 x=128^{\circ} \Rightarrow x=\frac{128^{\circ}}{2} \Rightarrow x=64^{\circ}$
Hence, $x=64^{\circ}$ and $y=90^{\circ}$

Question 5.
Find the size of each lettered angle in the following figures :

Solution:
(i) Here $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{BC} \| \mathrm{AD}$ (given)
$\therefore \quad \mathrm{ABCD}$ is a $\| \mathrm{gm}$
$\therefore \quad y=2 \times \angle \mathrm{ABD}$
$\Rightarrow y=2 \times 53^{\circ}=106^{\circ}$
Also, $y+\angle \mathrm{DAB}=180^{\circ}$
$\Rightarrow 106^{\circ}+\angle \mathrm{DAB}=180^{\circ}$
$\Rightarrow \angle \mathrm{DAB}=180^{\circ}-106^{\circ} \Rightarrow \angle \mathrm{DAB}=74^{\circ}$
$\therefore x=\frac{1}{2} \angle \mathrm{DAB} \quad(\because$ AC bisect $\angle \mathrm{DAB})$

$\Rightarrow \quad x=\frac{1}{2} \times 74^{\circ}=37^{\circ}$
and $\angle \mathrm{DAC}=x=37$
$\therefore \angle \mathrm{DAC}=z$
(Alternate angles)
From (2) and (3),
$z=37^{\circ}$
Hence, $x=37^{\circ}, y-106^{\circ}, z=37^{\circ}$
(ii) $\because \quad \mathrm{ED}$ is a st. line
$\therefore 60^{\circ}+\angle \mathrm{AED}=180^{\circ}$ (linear pair)
$\Rightarrow \quad \angle \mathrm{AED}=180^{\circ}-60^{\circ}$
$\Rightarrow \angle \mathrm{AED}=120^{\circ}$
$\because \quad C D$ is a st. line
$\therefore 50^{\circ}+\angle \mathrm{BCD}=180^{\circ}$

(ii)
(linear pair)

$$
\begin{align*}
& \Rightarrow \quad \angle \mathrm{BCD}=180^{\circ}-50^{\circ} \\
& \Rightarrow \quad \angle \mathrm{BCD}=130^{\circ} \tag{2}
\end{align*}
$$

In pentagon ABCDE
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{AED}+\angle \mathrm{BCD}+x=540^{\circ}$
(Sum of interior angles in pentagon is 540°)
$\Rightarrow 90^{\circ}+90^{\circ}+120^{\circ}+130^{\circ}+x=540^{\circ}$
$\Rightarrow 430^{\circ}+x=540^{\circ} \Rightarrow x=540^{\circ}-430^{\circ}$
$\Rightarrow x=110^{\circ}$
Hence, value of $x=110^{\circ}$
(iii) In given figure, $\mathrm{AD} \| \mathrm{BC}$
(given)

$\therefore \quad 60^{\circ}+y=180^{\circ}$ and $x+110^{\circ}=180^{\circ}$
$\Rightarrow y=180^{\circ}-60^{\circ}$ and $x=180^{\circ}-110^{\circ}$
$\Rightarrow y=120^{\circ}$ and $x=70^{\circ}$
$\because \quad \mathrm{CD} \| \mathrm{AF}$
(given)
$\therefore \angle \mathrm{FAD}=x$
(Alternate angles)
$\Rightarrow \quad \angle \mathrm{FAD}=70^{\circ}$
In quadrilateral ADEF ,

$$
\begin{equation*}
\angle \mathrm{FAD}+75^{\circ}+z+130^{\circ}=360^{\circ} \tag{1}
\end{equation*}
$$

$\Rightarrow 70^{\circ}+75^{\circ}+z+130^{\circ}=360^{\circ}$
$\Rightarrow 275^{\circ}+z=360^{\circ} \Rightarrow z=85^{\circ}$
Hence, $x=70^{\circ}, y=120^{\circ}$ and $z=85^{\circ}$

Question 6.
In the adjoining figure, $A B C D$ is a rhombus and $D C F E$ is a square. If $\angle A B C=56^{\circ}$, find
(i) $\angle \mathrm{DAG}$
(ii) \angle FEG
(iii) $\angle G A C$
(iv) $\angle A G C$.

Solution:
Here $A B C D$ and DCFE is a rhombus and square respectively.

$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{DC}=\mathrm{AD}$
Also $\mathrm{DC}=\mathrm{EF}=\mathrm{FC}=\mathrm{EF}$
From (1) and (2),
$\mathrm{AB}=\mathrm{BC}=\mathrm{DC}=\mathrm{AD}=\mathrm{EF}=\mathrm{FC}=\mathrm{EF}$
$\angle \mathrm{ABC}=56^{\circ}$ (given)
$\angle \mathrm{ADC}=56^{\circ}$
(opposite angle in rhombus are equal)
$\therefore \angle \mathrm{EDA}=\angle \mathrm{EDC}+\angle \mathrm{ADC}=90^{\circ}+56^{\circ}=146^{\circ}$
In $\triangle \mathrm{ADE}$,

$$
\begin{equation*}
\mathrm{DE}=\mathrm{AD} \tag{3}
\end{equation*}
$$

$\angle \mathrm{DEA}=\angle \mathrm{DAE}$ (equal sides have equal opposite angles)
$\angle \mathrm{DEA}=\angle \mathrm{DAG}=\frac{180^{\circ}-\angle \mathrm{EDA}}{2}$
$=\frac{180^{\circ}-146^{\circ}}{2}=\frac{34^{\circ}}{2}=17^{\circ}$
$\Rightarrow \quad \angle \mathrm{DAG}=17^{\circ}$
Also, $\angle \mathrm{DEG}=17^{\circ}$
$\therefore \quad \angle \mathrm{FEG}=\angle \mathrm{E}-\angle \mathrm{DEG}$
$=90^{\circ}-17^{\circ}=73^{\circ}$.
In rhombus ABCD ,

$$
\begin{aligned}
& \angle \mathrm{DAB}=180^{\circ}-56^{\circ}=124^{\circ} \\
& \angle \mathrm{DAC}=\frac{124^{\circ}}{2}(\because \mathrm{AC} \text { diagonals bisect the } \angle \mathrm{A})
\end{aligned}
$$

$\angle \mathrm{DAC}=62^{\circ}$
$\therefore \angle \mathrm{GAC}=\angle \mathrm{DAC}-\angle \mathrm{DAG}$
$=62^{\circ}-17^{\circ}=45^{\circ}$
In \triangle EDG,

$$
\angle \mathrm{D}+\angle \mathrm{DEG}+\angle \mathrm{DGE}=180^{\circ}
$$

(Sum of all angles in a triangle is 180°)
$\Rightarrow 90^{\circ}+17^{\circ}+\angle \mathrm{DGE}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{DGE}=180^{\circ}-107^{\circ}=73^{\circ}$
Hence, $\angle \mathrm{AGC}=\angle \mathrm{DGE}$
(vertically opposite angles)
From (4) and (5)
$\angle \mathrm{AGC}=73^{\circ}$

Question 7.

If one angle of a rhombus is 60° and the length of a side is $8 \mathbf{c m}$, find the lengths of its diagonals.
Solution:
Each side of rhombus $A B C D$ is 8 cm .
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=8 \mathrm{~cm}$.

Let $\quad \angle \mathrm{A}=60^{\circ}$
$\therefore \triangle \mathrm{ABD}$ is an equilateral triangle
$\therefore \mathrm{AB}=\mathrm{BD}=\mathrm{AD}=8 \mathrm{~cm}$.
\because Diagonals of a rhombus bisect each other eight angles.
$\therefore \mathrm{AO}=\mathrm{OC}, \mathrm{BO}=\mathrm{OD}=4 \mathrm{~cm}$.
and $\angle \mathrm{AOB}=90^{\circ}$
Now in right $\triangle \mathrm{AOB}$,

$$
\begin{array}{ll}
& \mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2} \\
& \text { (Pythagoras Theorem) } \\
\Rightarrow & (8)^{2}=\mathrm{AO}^{2}+(4)^{2} \\
\Rightarrow & 64=A O^{2}+16 \\
\Rightarrow \quad & \mathrm{AO}^{2}=64-16=48=16+3 \\
\therefore & \mathrm{AO}=\sqrt{16 \times 3}=4 \sqrt{3} \mathrm{~cm} \\
\text { But } \quad & \mathrm{AC}=2 \mathrm{AO} \\
\therefore & \mathrm{AC}=2 \times 4 \sqrt{3}=8 \sqrt{3} \mathrm{~cm}
\end{array}
$$

Question 8.
Using ruler and compasses only, construct a parallelogram $A B C D$ with $A B=5$ $\mathrm{cm}, A D=2.5 \mathrm{~cm}$ and $\angle B A D=45^{\circ}$. If the bisector of $\angle B A D$ meets $D C$ at E, prove that $\angle A E B$ is a right angle.
Solution:
Given : $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AD}=2.5 \mathrm{~cm}$ and $\angle \mathrm{BAD}=45^{\circ}$.
Required : (i) To construct a parallelogram ABCD .
(ii) If the bisector of $\angle \mathrm{BAD}$ meets DC at E then prove that $\angle \mathrm{AEB}=90^{\circ}$.

(6)

S Then

