Theorems on Area

Question 1.
Prove that the line segment joining the mid-points of a pair of opposite sides of a parallelogram divides it into two equal parallelograms.
Solution:
Given. ABCD is a parallelogram in which E
and F are mid-points of $A B$ and $C D$ respectively.
Joining EF.
To prove. ar $(\| \mathrm{AEFD})=\operatorname{ar}(\|(\mathrm{EBCF})$

Construction. $\mathrm{DG} \perp \mathrm{AG}$ and let $\mathrm{DG}=h$ i.e. h is the Altitude on side AB .
Proof. ar $(\| \mathrm{ABCD})=\mathrm{AB} \times h$
$\operatorname{ar}(\mathrm{ll} \mathrm{AEFD})=\mathrm{AE} \times h=\frac{1}{2} \mathrm{AB} \times h$
($\because \mathrm{E}$ is the mid-point of AB)
$\operatorname{ar}(\| \mathrm{EBCF})=\mathrm{EF} \times h=\frac{1}{2} \mathrm{AB} \times h$
($\because \mathrm{E}$ is the mid-point of AB)
From (1) and (2)
ar ($\| \mathrm{gm} \mathrm{ABFD}$) $=\operatorname{ar}$ (|| EBCF)
Hence, the line segment joining the mid-points of a pair of opposite sides of a parallelogram divides it into two equal parallelograms. (Q.E.D.)

Question 2.

Prove that the diagonals of a parallelogram divide it into four triangles of equal area.
Solution:

Given. In parallelogram ABCD the diagonals AC and BD are cut at point O .
To prove. $\operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{BOC})=\operatorname{ar}(\triangle \mathrm{COD})=$ ar ($\triangle \mathrm{AOD}$)

Proof. We know that
In parallelogram ABCD the diagonals are bisecting each other.
$\therefore \quad \mathrm{AO}=\mathrm{OC}$
In $\triangle A C D, O$ is the mid-point of $A C$.
$\therefore \quad$ DO is median
$\therefore \operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\mathrm{COD})$
[Median of a triangle divides it into two triangles of equal areas]
Similarly, in $\triangle \mathrm{ABC}$
$\operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{COB})$
In $\triangle \mathrm{ADB}$
$\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{AOB})$
and in $\triangle \mathrm{CDB}$
$\operatorname{ar}(\triangle C O D)=\operatorname{ar}(\triangle C O B)$
From (1), (2), (3) and (4)
$\operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{BOC})=\operatorname{ar}(\triangle \mathrm{COD})=\operatorname{ar}(\triangle \mathrm{AOD})$
Hence, diagonals of a parallelogram divide it into four triangles of equal Area.
(Q.E.D.)

Question 3.

(a) In the figure (1) given below, $A D$ is median of $\triangle A B C$ and P is any point on $A D$. Prove that
(i) area of $\triangle \mathrm{PBD}=$ area of $\triangle \mathrm{PDC}$.
(ii) area of $\triangle A B P=$ area of $\triangle A C P$.
(b) In the figure (2) given below, $D E \| B C$. prove that (i) area of $\triangle A C D=$ area of Δ

ABE.
(ii) area of $\triangle O B D=$ area of $\triangle O C E$.

Solution:
(a) Given. $\mathrm{A} \triangle \mathrm{ABC}$ in which AD is median. P is any point on AD . Join PB and PC.

To prove. (i) $\operatorname{ar}(\triangle \mathrm{PBD})=\operatorname{ar}(\triangle \mathrm{PDC})$
(ii) $\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACP})$

(1)

Proof. Since, AD is median of $\triangle \mathrm{ABC}$
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC})$
(Median of a triangle divides it into two triangles of equal areas)

Also PD is median of $\triangle \mathrm{BPD}$
Similarly ar $(\triangle \mathrm{PBD})=\operatorname{ar}(\triangle \mathrm{PDC})$
Subtracting (2) from (1),
$\operatorname{ar}(\triangle \mathrm{ABD}-\operatorname{ar}(\triangle \mathrm{PBD})=\operatorname{ar}(\triangle \mathrm{ADC})-\operatorname{ar}(\triangle \mathrm{PDC})$
or, $\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACP})$
(Q.E.D.)
(b) Given. $\triangle \mathrm{ABC}$ in which $\mathrm{DE} \| \mathrm{BC}$.

To prove.
(i) $\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{ABE})$
(ii) $\operatorname{ar}(\triangle \mathrm{OBD})=\operatorname{ar}(\triangle \mathrm{OCE})$

Proof. (i) $\triangle \mathrm{DEC}$ and $\triangle \mathrm{BDE}$ are on the same base DE and between the same I| line DE and BE.
$\operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{BDE})$

(2)

Adding ar (ADE) to both side,
$\operatorname{ar}(\triangle \mathrm{DEC})+\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{BDE})+\operatorname{ar}(\triangle \mathrm{ADE})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{ABE})$
(Q.E.D.)
(ii) $\operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{BDE})$

Subtracting ar ($\triangle \mathrm{DOE}$) from both side,

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{DEC})-\operatorname{ar}(\triangle \mathrm{DOE})=\operatorname{ar}(\triangle \mathrm{BDE})-\operatorname{ar}(\triangle \mathrm{DOE}) \\
& \Rightarrow \quad \operatorname{ar}(\triangle \mathrm{OBD})=\operatorname{ar}(\triangle \mathrm{OCE}) \quad, \quad(\mathrm{Q} . \mathrm{E} \cdot \mathrm{D} .)
\end{aligned}
$$

Question 4.

(a) In the figure (1) given below, $A B C D$ is a parallelogram and P is any point in $B C$. Prove that: Area of $\triangle A B P+$ area of $\triangle D P C=$ Area of $\triangle A P D$.
(b) In the figure (2) given below, O is any point inside a parallelogram $A B C D$.

Prove that:
(i) area of $\triangle O A B+$ area of $\triangle O C D=\frac{1}{2}$ area of $|\mid ~ g m ~ A B C D$.
(ii) area of $\triangle O B C+$ area of $\triangle O A D=\frac{1}{2}$ area of $\| g m A B C D$

Solution:
(a) Given. ABCD is a parallelogram and P is any point in BC .
To prove.
$a r(\triangle \mathrm{ABP})+a r$ $(\triangle \mathrm{DPC})=\operatorname{ar}(\triangle \mathrm{APD})$ Proof. $\triangle \mathrm{APD}$ and Il gm ABCD are on the same Base $A D$ and
 between the same \| lines $A D$ and $B C$,
$a r(\triangle \mathrm{APD})=\frac{1}{2} a r(\| \mathrm{gm} \mathrm{ABCD})$
In parallelogram ABCD
$a r(\| g m \mathrm{ABCD})=a r(\triangle \mathrm{ABP})+\operatorname{ar}(\triangle \mathrm{APD})+a r$ ($\triangle \mathrm{DPC}$)
Dividing both sides by 2 , we get
$\frac{1}{2} a r(\| \mathrm{gm} \mathrm{ABCD})=\frac{1}{2} a r(\triangle \mathrm{ABP})+\frac{1}{2} a r$
$(\triangle \mathrm{APD})+\frac{1}{2} \operatorname{ar}(\triangle \mathrm{DPC})$
From (1) and (2)
$\operatorname{ar}(\triangle \mathrm{APD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABP})+\frac{1}{2} \operatorname{ar}(\triangle \mathrm{APD})+$ $\frac{1}{2} \operatorname{ar}(\triangle \mathrm{DPC})$
$\operatorname{ar}(\triangle \mathrm{APD})-\frac{1}{2} \operatorname{ar}(\triangle \mathrm{APD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABP})+$ $\frac{1}{2} \operatorname{ar}(\triangle \mathrm{DPC})$
$\Rightarrow \quad \frac{1}{2} \operatorname{ar}(\triangle \mathrm{APD})=\frac{1}{2}[\operatorname{ar}(\Delta \mathrm{ABP})+\operatorname{ar}(\triangle \mathrm{DPC})]$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{APD})=\operatorname{ar}(\triangle \mathrm{ABP})+\operatorname{ar}(\triangle \mathrm{DPC})$
$\therefore \operatorname{ar}(\triangle \mathrm{ABP})+\operatorname{ar}(\triangle \mathrm{DPC})=\operatorname{ar}(\triangle \mathrm{APD})$
(Q.E.D.)
(b) Given. II gm ABCD in which O is any point inside it.
To prove. (i) ar
$(\triangle \mathrm{OAB})+\operatorname{ar}(\triangle \mathrm{OCD})$
$=\frac{1}{2} \operatorname{ar}(\| \operatorname{gm~ABCD})$

(ii) $\operatorname{ar}(\triangle \mathrm{OBC})+\operatorname{ar}(\triangle \mathrm{OAD})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$

Construction. Draw $P O Q \| A B$ through O. It meets $A D$ at P and $B C$ at Q.
Proof. (i) $\mathrm{AB} \| \mathrm{PQ}$ and $\mathrm{AP} \| \mathrm{BQ}$
$\therefore \mathrm{ABQP}$ is a $\| \mathrm{gm}$
Similarly PQCD is a $\| \mathrm{gm}$
Now, $\triangle \mathrm{OAB}$ and $\| \mathrm{gm} \mathrm{ABQP}$ are on same base $A B$ and between same \| lines $A B$ and $P Q$.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{OAB})=\frac{1}{2} \operatorname{ar}(11 \operatorname{gm~ABQP})$
Similarly, $\operatorname{ar}(\triangle O C D)=\frac{1}{2} \operatorname{ar}(\| \operatorname{gm~PQCD})$
Adding (1) and (2),

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{OAB})+\operatorname{ar}(\triangle \mathrm{OCD}) \\
& =\frac{1}{2} \operatorname{ar}(\| \operatorname{gm~ABQP})+\frac{1}{2} \operatorname{ar}(\| \operatorname{gm~PQCD}) \\
& \Rightarrow \operatorname{ar}(\triangle \mathrm{OAB})+\operatorname{ar}(\Delta \mathrm{OCD}) \\
& =\frac{1}{2}[\operatorname{ar}(\| \operatorname{gm~ABQP})+\operatorname{ar}(\| \operatorname{gm} \mathrm{PQCD})] \\
& \Rightarrow \operatorname{ar}(\triangle \mathrm{OAB})+\operatorname{ar}(\triangle \mathrm{OCD})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})
\end{aligned}
$$

$$
\begin{align*}
& \text { (iii) } \quad \because \operatorname{ar}(\triangle \mathrm{OAB})+\operatorname{ar}(\triangle \mathrm{OBC})+\operatorname{ar}(\triangle \mathrm{OCD})+ \\
& \operatorname{ar}(\triangle \mathrm{OAD})=\operatorname{ar}=(\| \operatorname{gm} \mathrm{ABCD}) \\
& \Rightarrow \quad[\operatorname{ar}(\triangle \mathrm{OAB})+\operatorname{ar}(\triangle \mathrm{OCD})]+[\operatorname{ar}(\triangle \mathrm{OBC})+ \\
& \operatorname{ar}(\triangle \mathrm{OAD})]=\operatorname{ar}(\| \operatorname{gm~ABCD}) \\
& \Rightarrow \quad \frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})+\operatorname{ar}(\Delta \mathrm{OBC})+ \\
& \operatorname{ar}(\triangle \mathrm{OAD})=\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD}) \\
& \Rightarrow \quad \operatorname{ar}(\triangle \mathrm{OBC})+\operatorname{ar}(\triangle \mathrm{OAD}) \\
& =\operatorname{ar}(\| \operatorname{gm~ABCD})-\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD}) \\
& \Rightarrow \operatorname{ar}(\triangle \mathrm{OBC})+\operatorname{ar}(\triangle \mathrm{OAD})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD}) \tag{Q.E.D.}
\end{align*}
$$

Question 5.
If E, F, G and H are mid-points of the sides $A B, B C, C D$ and $D A$ respectively of a parallelogram $A B C D$, prove that area of quad. $E F G H=1 / 2$ area of || gm ABCD.

Solution:
Given : In parallelogram $\mathrm{ABCD}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, H are the mid-points of its sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively EF, FG, GH and HE are joined

To prove : Area of quad. $\mathrm{EFGH}=1 / 2$ area $\| \mathrm{gm}$ ABCD

Construction : Join EG

Proof : $\because E$ and G are mid-points of $A B$ and CD respectively
$\therefore \mathrm{EG}\|\mathrm{AD}\| \mathrm{BC}$
\therefore AEGD and EBCG are parallelogram
Now \|gm AEGD and $\triangle E H G$ are on the same base and between the parallel lines
\therefore area $\Delta \mathrm{EHG}=\frac{1}{2}$ area \|gm AEGD
Similarly,
area $\triangle \mathrm{EFG}=\frac{1}{2}$ area $\| \mathrm{gm}$ EBCG
Adding (i) and (ii),
area $\triangle \mathrm{EHG}+$ area $\Delta \mathrm{EFG}=\frac{1}{2}$ area $\| \mathrm{gm}$
AEGD + area ||gm EBCG
\Rightarrow area quad. $\mathrm{EFGH}=\frac{1}{2}$ area $\| \mathrm{gm} \mathrm{ABCD}$.
Hence proved.

Question 6.
(a) In the figure (1) given below, $A B C D$ is a parallelogram. P, Q are any two points on the sides $A B$ and $B C$ respectively. Prove that, area of $\triangle C P D=$ area of $\triangle A Q D$.

(b) In the figure (2) given below, PQRS and ABRS are parallelograms and X is any point on the side $B R$. Show that area of $\triangle A X S=\frac{1}{2}$ area of ||gm PQRS Solution:
(a) Given. II gm $A B C D$ in which P is a point on $A B$ and Q is a point on $B C$.

To prove. (i) ar $(\triangle \mathrm{CPD})=\operatorname{ar}(\mathrm{AQD})$
Proof. $\triangle \mathrm{CPD}$ and \| gm ABCD are on the same base $C D$ and between the same parallels $A B$ and CD.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{CPD})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
$\triangle A Q D$ and $\|$ gm $A B C D$ are on the same base $A D$ and between the same $\|$ lines $A D$ and $B C$,
$\therefore \operatorname{ar}(\triangle \mathrm{AQD})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
From (1) and (2),
$\operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{AQD})$
Hence, area of $\triangle C P D=$ area of $\triangle A Q D$.
(Q.E.D.)
(b) Given : PQRS and $A B R S$ are parallelogram on the same base SR. X is any point on BR. AX and SX are joined.

To prove : area $\triangle \mathrm{AXS}=\frac{1}{2}$ area $\| \mathrm{gm}$ PQRS
$\because \| g m ~ P Q R S$ and ABRS are on the same base SR and between the same paralleds
\therefore area $\| \mathrm{gm}$ PQRS $=$ area $\| g m ~ A B R S$
$\because \triangle \mathrm{AXS}$ and $\| \mathrm{gm}$ ABRS are on the same base AS and between the same parallels
\therefore area $\triangle \mathrm{AXS}=\frac{1}{2}$ area $\| \mathrm{gm}$ ABRS
$=\frac{1}{2}$ area $\| \mathrm{gm}$ PQRS
[From (i)]

Question 7.
$D, E a n d F$ are mid-point of the sides $B C, C A$ and $A B$ respectively of a $\triangle A B C$. Prove that
(i) FDCE is a parallelogram
(ii) area of ADEF $=\frac{1}{4}$ area of ABC
(iii) area of $\| \mathrm{gm}$ FDCE $=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$.

Solution:

Given. D, E, F are mid-points of the sides $B C, C A$, and $A B$ respectively of a $\triangle A B C$.

To prove. (i) FDCE is a parallelogram.
(ii) Area of $\triangle \mathrm{DEF}=\frac{1}{4}$ are of $\triangle \mathrm{ABC}$.
(iii) Area of \|l gm FDCE $=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$.

Proof. $\because \mathrm{F}$ and E are mid-points of AB and AC respectively.
$\therefore \mathrm{FE} \| \mathrm{BC}$ and $\mathrm{FE}=\frac{1}{2} \mathrm{BC}$
Also D is mid-point of $B C$
$C D=\frac{1}{2} B C$
From (1) and (2)
$\mathrm{FE} \| \mathrm{BC}$ and $\mathrm{FE}=\mathrm{CD}$
i.e. $\mathrm{FE} \| \mathrm{CD}$ and $\mathrm{FE}=\mathrm{CD}$

Similarly D and F are mid-points of $B C$ and $A B$ respectively.
$\therefore \mathrm{DF} \| \mathrm{EC}$ is a $\| \mathrm{gm}$
(Q.E.D.)
(ii) Since FDCE is a II gm

And DE is diagonal of $\| \mathrm{gm}$ FDCE
$\therefore \operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\mathrm{DEC})$
[\because A diagonal of a parallelogram divides, it into two triangle of equal areas]
Similarly, we show BDEF and DEAF are $\| \mathrm{gm}$ and

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{BDF})=\operatorname{ar}(\triangle \mathrm{AFE}) \tag{6}
\end{equation*}
$$

From (5) and (6)
$\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{BDF})=\operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle \mathrm{DEC})$
Now, $\operatorname{ar}(\Delta \mathrm{ABC})=\operatorname{ar}(\Delta \mathrm{BDF})+\operatorname{ar}(\Delta \mathrm{DEF})+\operatorname{ar}$
$(\triangle \mathrm{DEC})+\operatorname{ar}(\triangle \mathrm{AFE})$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})+a r$
$(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC}=4 \operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
$\therefore \quad$ area of $\triangle \mathrm{DEF}=\frac{1}{4}$ area of $\triangle \mathrm{ABC}$
(Q.E.D.)
(iii) Area of $\|$ gmFDCE $=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEC})$
$=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})$
$=2 \operatorname{ar}(\triangle \mathrm{DEF})$
[From(5)]
$=2\left[\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})\right]$
[From (7)]
\therefore Area of \|I gm FDCE $=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$
(Q.E.D.)

Question 8.
In the given figure, D, E and F are mid points of the sides BC, CA and AB respectively of $A A B C$. Prove that BCEF is a trapezium and area of trap. BCEF $=\frac{3}{4}$ area of $\triangle \mathrm{ABC}$.

Solution:

Given : In $\triangle A B C, D, E$ artd F are the midpoints of the sides $B C, C A$ and $A B$ respectively and are joined in order.

To prove : Area trapezium $\mathrm{BCEF}=\frac{3}{4}$ area
$\triangle \mathrm{ABC}$.
Proof: $\because \mathrm{D}$ and E are the mid-points of BC and $C A$ respectively.
$\therefore \mathrm{DE} \| \mathrm{AB}$ and $\frac{1}{2} \mathrm{AB}$
Similarly, $\mathrm{EF} \| \mathrm{BC}$ and $\frac{1}{2} \mathrm{BC}$
and $\mathrm{FD} \| \mathrm{AC}$ and $\frac{1}{2} \mathrm{AC}$
\therefore BDEF, CEFD and AFDE are parallelograms which are equal in area.
ED, DE and EF are the diagonals of these llgms which divide correspondning parallelogram into two triangles equal in area. Now, area of trapezium BCEF has the equal trianlges and $\triangle \mathrm{ABC}$ has 4 equal triangles.
\therefore area of trap. $\mathrm{BCEF}=\frac{3}{4}$ area $(\triangle \mathrm{ABC})$

Question P.Q.
Prove that two triangles having equal areas and having one side of one of the triangles equal to one side of the other, have their corresponding altitudes equal. Solution:

Given. Area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{PQR}$
Also $\mathrm{BC}=\mathrm{QR}$

To prove. $\mathrm{AD}=\mathrm{PS}$, where AD and PS are Altitudes of $\triangle A B C$ and $\triangle P Q R$ respectively.
Proof. Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{PQR}$
Now, area of $\triangle \mathrm{ABC}=\frac{1}{2} \times$ Base $\times \mathrm{AD}$
Area of $\triangle \mathrm{PQR}=\frac{1}{2} \times$ Base \times Altitude
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{PQR})=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PS}$
From (1), (2) and (3),
$\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PS}$
or $\mathrm{BC} \times \mathrm{AD}=\mathrm{QR} \times \mathrm{PS}$
or $\mathrm{QR} \times \mathrm{AD}=\mathrm{QR} \times \mathrm{PS} \quad[\mathrm{BC}=\mathrm{QR}$ (given)
or $\mathrm{AD}=\mathrm{PS}$
i.e. Altitude of $\triangle \mathrm{ABC}=$ Altitude of $\triangle \mathrm{PQR}$

Question 9.

(a) In the figure (1) given below, the point D divides the side $B C$ of $\triangle A B C$ in the ratio $m: n$. Prove that area of $\triangle A B D$: area of $\triangle A D C=m: n$.
(b) In the figure (2) given below, P is a point on the sido $B C$ of $\triangle A B C$ such that $P C$ $=2 B P$, and Q is a point on $A P$ such that $Q A=5 P Q$, find area of $\triangle A Q C$: area of $\triangle \mathrm{ABC}$.
(c) In the figure (3) given below, $A D$ is a median of $\triangle A B C$ and P is a point in $A C$ such that area of $\triangle A D P$: area of $A A B D=2: 3$. Find
(i) AP : PC (ii) area of $\triangle P D C$: area of $\triangle A B C$.

(3)

Solution:
Given. In $\triangle \mathrm{ABC}, \mathrm{D}$ divides the side BC in the ratio $m: n$ i.e $\mathrm{BD}: \mathrm{DC}=m: n$
To prove. Area of $\triangle \mathrm{ABD}$: Area of $\triangle \mathrm{ADC}=m: n$
Proof. Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times$ Base \times height
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AE}$
Area of $(\triangle \mathrm{ACD})=\frac{1}{2} \times \mathrm{DC} \times \mathrm{AE}$
Dividing (1) by (2)

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle \mathrm{ABD})}{\operatorname{ar}(\triangle \mathrm{ACD})}=\frac{\frac{1}{2} \times \mathrm{BD} \times \mathrm{AE}}{\frac{1}{2} \times \mathrm{DC} \times \mathrm{AE}} \\
& \Rightarrow \quad \frac{\operatorname{ar}(\triangle \mathrm{ABD})}{\operatorname{ar}(\triangle \mathrm{ACD})}=\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{m}{n}
\end{aligned}
$$

$$
\text { [given } \mathrm{BD}: \mathrm{DC}=m: n \text {] }
$$

(Q.E.D.)
(b) Given. In $\triangle \mathrm{ABC}, \mathrm{P}$ is a point on side $B C$ such that $\mathrm{PC}=2 \mathrm{BP}$ and Q is a point on AP such that $\mathrm{QA}=5 \mathrm{PQ}$.
Required. Area of $\triangle \mathrm{AQC}$: Area of $\triangle \mathrm{ABC}$

Sol. $\mathrm{PC}=2 \mathrm{BP}$
[given)
But $\mathrm{BC}=\mathrm{BP}+\mathrm{PC}$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{BC}=\frac{\mathrm{PC}}{2}+\mathrm{PC} \\
& \Rightarrow \quad \mathrm{BC}=\frac{\mathrm{PC}+2 \mathrm{PC}}{2} \Rightarrow \mathrm{BC}=\frac{3 \mathrm{PC}}{2} \\
& \Rightarrow \quad \mathrm{PC}=\frac{3}{2} \mathrm{BC}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad \text { Area of } \triangle \mathrm{APC}=\frac{2}{3} \text { Area of } \triangle \mathrm{ABC} \tag{1}
\end{equation*}
$$

$\mathrm{QA}=5 \mathrm{PQ}$
(given)
$\Rightarrow \mathrm{AQ}=\frac{5}{6} \mathrm{AP}$ $[\because A Q=A Q+P Q]$
$\Rightarrow \quad$ Area of $\triangle \mathrm{AQC}=\frac{5}{6}$ Area of $\triangle \mathrm{APC}$
$=\frac{5}{6} \times\left(\frac{2}{3}\right.$ Area of $\left.\triangle \mathrm{ABC}\right)$
[From(1)]
$=\frac{5}{9}$ Area of $\triangle \mathrm{ABC}$
$\therefore \frac{\text { Area of } \triangle \mathrm{AQC}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{5}{9}$
Hence, Area of $\triangle \mathrm{AQC}$: Area of $\triangle \mathrm{ABC}$ = 5:9 Ans.
(c) Given. AD is a median of $\triangle \mathrm{ABC} . \mathrm{P}$ is a point on AC such that
Area of $\triangle A D P$: area of $\triangle A B D$ $=2: 3$
Required. (i) AP : PC
(ii) Area of $\triangle \mathrm{PDC}$: area of $\triangle \mathrm{ABC}$

Sol. (i) Since AD is median of ${ }^{\mathrm{B}}$
$\triangle \mathrm{ABC}$
\therefore Area of $\triangle \mathrm{ABD}=$ Area of $\triangle \mathrm{ADC}=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$..... (1)
[\because Median divides a triangle into two triangle of equal area]

Given. Area of $\triangle \mathrm{ADP}$: Area of $\triangle \mathrm{ABD}=2: 3$
(given)
$\Rightarrow \quad$ Area of $\triangle \mathrm{ADP}:$ Area of $\triangle \mathrm{ADC}=2: 3$
$\Rightarrow \quad \mathrm{AP}: \mathrm{AC}=2: 3$
$\Rightarrow \quad \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{2}{3} \Rightarrow \mathrm{AP}=\frac{2}{3} \mathrm{AC}$
Now, $\mathrm{PC}=\mathrm{AC}-\mathrm{AP}=\mathrm{AC}-\frac{2}{3} \mathrm{AC}=\frac{\mathrm{AC}}{3}$
$\therefore \frac{\mathrm{AP}}{\mathrm{PC}}=\frac{\frac{2}{3} \mathrm{AC}}{\frac{\mathrm{AC}}{3}}=\frac{2}{1}$
$\Rightarrow \quad \mathrm{AP}: \mathrm{PC}=2: 1$
(ii) From (2) $\mathrm{PC}=\frac{\mathrm{AC}}{3}$
$\Rightarrow \quad \frac{\mathrm{PC}}{\mathrm{AC}}=\frac{1}{3}$
Since the base $A C$, of $\triangle P D C, \triangle A D C$ lie along the same line, and these triangles have equal heights. therefore,

$$
\frac{\text { Area of } \triangle P D C}{\text { Area of } \triangle A D C}=\frac{P C}{A C}
$$

$\Rightarrow \frac{\text { Area of } \triangle \mathrm{PDC}}{\text { Area of } \triangle \mathrm{ADC}}=\frac{1}{3}$
$\Rightarrow \frac{\text { Area of } \triangle P D C}{\frac{1}{2} \text { area of } \triangle \mathrm{ABC}}=\frac{1}{3}$
[From (1)]
$\Rightarrow \quad \frac{\text { Area of } \triangle \mathrm{PDC}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{1}{3} \times \frac{1}{2}$
$\Rightarrow \quad \frac{\text { Area of } \triangle \mathrm{PDC}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{1}{6}$
Hence, area of $\triangle P D C$: area of $\triangle A B C=1: 6$

Question 10.
(a) In the figure (1) given below, area of parallelogram $A B C D$ is 29 cm 2 . Calculate the height of parallelogram $A B E F$ if $A B=5.8 \mathrm{~cm}$
(b) In the figure (2) given below, area of $\triangle A B D$ is 24 sq. units. If $A B=8$ units, find the height of $A B C$.
(c) In the figure (3) given below, E and F are mid points of sides $A B$ and $C D$ respectively of parallelogram $A B C D$. If the area of parallelogram $A B C i p$ is 36 cm 2 .
(i) State the area of \triangle APD.
(ii) Name the parallelogram whose area is equal to the area of \triangle APD.

Solution:

Given. Area of $\| \mathrm{gm} \mathrm{ABCD}=29 \mathrm{~cm}^{2}$
Required. Height of parallelogram ABEF if $\mathrm{AB}=5.8 \mathrm{~cm}$.
Sol. Since II gm ABCD and \| gm ABEF with equal Bases and between the same ${ }^{D}$
 parallels so that their area are same.
$\therefore \quad \operatorname{ar}(\| \mathrm{gm} \mathrm{ABEF})=\operatorname{ar}(\| \mathrm{ABCD})$
$\Rightarrow \operatorname{ar}(\| \mathrm{gm} \mathrm{ABEF})=29 \mathrm{~cm}^{2}$
[ar $\left(\| \mid \operatorname{gm~ABCD}=29 \mathrm{~cm}^{2}\right.$ given $\left.)\right]$
Also ar (II gm ABEF $=$ Base \times height
$\Rightarrow \quad 29=\mathrm{AB} \times$ height
[From(1)]
$\Rightarrow \quad 29=5.8 \times$ height
$[\mathrm{AB}=5.8$ (given)]
\Rightarrow height $=\frac{29}{5.8}=\frac{29 \times 10}{58}=\frac{10}{2}=5$
\therefore Height of parallelogram $\mathrm{ABEF}=5 \mathrm{~cm}$
(b) Given. Area of $\triangle \mathrm{ABD}$ $=24$ sq. units $=A B=8$ units. Required. Height of $\triangle \mathrm{ABC}$. Sol. Area of $\triangle \mathrm{ABD}=24 \mathrm{sq}$. units

(2)
$\therefore \quad$ Area of $\triangle \mathrm{ABD}=$ Area of $\triangle \mathrm{ABC}$
(\because Triangles on the same base and between the same parallels are equal in area)
From (1) and (2),
Area of $\triangle \mathrm{ABC}=24$ sq. units.
$\Rightarrow \quad \frac{1}{2} \times \mathrm{AB} \times$ height $=24$
$\Rightarrow \frac{1}{2} \times 8 \times$ height $=24 \Rightarrow$ height $=\frac{24 \times 2}{8}$
\Rightarrow height $=3 \times 2=6$
Hence, height of $\triangle \mathrm{ABC}=6$ Units.
(c) Given. In \| gm $\mathrm{ABCD}, \mathrm{E}$ and F are mid-point of sides $A B$ and $C D$ respectively.
$\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=36 \mathrm{~cm}^{2}$
Required : (i) $\operatorname{ar}(\triangle \mathrm{APD})$
(ii) name the $\|$ gm whose area is equal to the area of $\triangle \mathrm{APD}$.
Sol. \triangle APD and $\| \mathrm{gm} \mathrm{ABCD}$ are on the same base AD and between the same
 II lines $A D$ and $B C$.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{APD})=\frac{1}{2} \operatorname{ar}(\| \operatorname{gm~ABCD})$
But ar $(\| l$ gm $A B C D)=36 \mathrm{~cm}^{2}$
From (1) and (2),
$\operatorname{ar}(\triangle \mathrm{APD})=\frac{1}{2} \times 36 \mathrm{~cm}^{2}$
$\operatorname{ar}(\triangle \mathrm{APD})=18 \mathrm{~cm}^{2}$
(ii) E and F are mid-points of AB and CD

In $\triangle C P D, E F \| P C$.
Also EF bisect the $\| \mathrm{gm} \mathrm{ABCD}$ in two equal parts.
Now, $\mathrm{EF} \| \mathrm{AD}$ and $\mathrm{AE} \| \mathrm{DF}$
$\therefore \quad$ AEFD is a $\| \mathrm{gm}$.
$\therefore \quad \operatorname{ar}\left(\| \operatorname{gm~AEFD}=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})\right.$
From (1) and (3),'
$\operatorname{ar}(\triangle \mathrm{APD})=\operatorname{ar}(\| \mathrm{gm} \mathrm{AEFD})$
$\therefore \quad$ AEFD is the required $\| \mathrm{gm}$ which is equal to
the area of $\triangle \mathrm{APD}$.
(Q.E.D.)

Question 11.

(a) In the figure (1) given below, ABCD is a parallelogram. Points P and Q on BC trisect $B C$ into three equal parts. Prove that : area of $\triangle \mathrm{APQ}=$ area of $\triangle \mathrm{DPQ}=\frac{1}{6}$ (area of \|gm ABCD)
(b) In the figure (2) given below, DE is drawn parallel to the diagonal AC of the quadrilateral $A B C D$ to meet $B C$ produced at the point E. Prove that area of quad. $A B C D=$ area of $\triangle A B E$.
(c) In the figure (3) given below, ABCD is a parallelogram. O is any point on the diagonal $A C$ of the parallelogram. Show that the area of $\triangle A O B$ is equal to the area of $\triangle A O D$.

(3)

Solution:
(a) Given : In \|gm ABCD, points P and Q trisect BC into three equal parts.
To prove $:$ area $(\triangle \mathrm{APQ})=$ area $(\triangle \mathrm{DPQ})=$ $\frac{1}{6}$ area $\| \mathrm{gm} \mathrm{ABCD}$.
Construction : Through P and Q, draw $P R$ and QS parallel to $A B$ and $C D$.

Proof : Now, $\triangle A P D$ and $\triangle A Q D$ lie on the same base $A D$ and between the same parallel $A D$ and $B C$.
$\therefore \operatorname{ar}(\triangle A P D)=\operatorname{ar}(\triangle A Q D)$
$\operatorname{ar}(\triangle \mathrm{APD})-\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{AQD})-\operatorname{ar}(\triangle \mathrm{AOD})$
[on substracting $\operatorname{ar}(\triangle \mathrm{AOD}$ from both sides]
$\Rightarrow \operatorname{ar}(\triangle A P O=\operatorname{ar}(\triangle O Q D)$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{APO})+\operatorname{ar}(\triangle \mathrm{OPQ})=\operatorname{ar}(\triangle \mathrm{OQD})+$ $\operatorname{ar}(\triangle \mathrm{OPQ})$
[on adding $\operatorname{ar}(\triangle \mathrm{OPQ})$ on both sides]
$\operatorname{ar}(\triangle \mathrm{APQ})=\operatorname{ar}(\triangle \mathrm{DPQ})$
Again, $\triangle \mathrm{APQ}$ and parallelogram PQSR are on the same base $P Q$ and between same parallels $P Q$ and $A D$.
$\therefore \operatorname{ar}(\triangle \mathrm{APQ})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{PQRS})$
Now,
$\frac{\operatorname{ar}(\| g m \mathrm{ABCD})}{\operatorname{ar}(\| g m \mathrm{PQRS})}=\frac{\mathrm{BC} \times \text { height }}{\mathrm{PQ} \times \text { height }}=\frac{3 \mathrm{PQ} \times \text { height }}{\mathrm{PQ} \times \text { height }}$
$=3$
$\operatorname{ar}(\| g m$ PQRS $)=\frac{1}{3} \operatorname{ar}(\| g m \mathrm{ABCD}) \quad \ldots(i v)$
Using (ii), (iii) and (iv), we get
$\operatorname{ar}(\triangle \mathrm{APQ})=\operatorname{ar}(\triangle \mathrm{DPQ})$
$=\frac{1}{2} \operatorname{ar}(\| g m$ PQRS $)$
$=\frac{1}{2} \times \frac{1}{3} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{APQ})=\operatorname{ar}(\triangle \mathrm{DPQ})=\frac{1}{6} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
Hence proved.
(b) Given : In the given figure, $\mathrm{DE} \| \mathrm{AC}$ the diagonal of quadrilateral $A B C D$ which meets at E on producing $\mathrm{BC} . \mathrm{AC}, \mathrm{AE}$ are joined.
To prove : Area of quadrilateral $\mathrm{ABCD}=$ area $\triangle \mathrm{ABE}$.
Proof: $\triangle \mathrm{ACE}$ and $\triangle \mathrm{ADE}$ area on the same base AC and between the same parallelogram.
\therefore area $\triangle A C E=$ area $\triangle A D C$
Adding area $\triangle A B C$ to both sides
area $\triangle A C E+$ area $\triangle A B C$
$=$ area $\triangle A D C+$ area $\triangle A B C$
\Rightarrow area $\triangle A B E=$ area quad. $A B C D$
(c) Given : In \|gm ABCD, O is any point on diagonal AC.
To prove : area $\triangle A O B=$ area $\triangle A O D$
Construction : Join $B D$ which meets $A C$ at P.

Proof: $\ln \triangle A B D, A P$ is median
(\because Diagonals of a $\| \mathrm{gm}$ bisect each other)
\therefore area $\triangle \mathrm{ABP}=$ area $\triangle \mathrm{ADP}$
Similarly, area $\triangle \mathrm{PBO}=$ area $\triangle \mathrm{PDO}$
Adding, (i) and (ii), we get
area $\triangle A B O=$ area $\triangle A D O$
$\Rightarrow \triangle A O B=$ area $\triangle A O D$

Question P.Q.

(a) In the figure (1) given below, two parallelograms ABCD and AEFB are drawn on opposite sides of AB, prove that: area of || gm ABCD + area of || gm AEFB = area of $\|$ gm EFCD.
(b) In the figure (2) given below, D is mid-point of the side AB of $\triangle \mathrm{ABC}$. P is any point on $B C, C Q$ is drawn parallel to $P D$ to meet $A B$ in Q. Show that area of $\triangle B P Q$ $=\frac{1}{2}$ area of $\triangle A B C$.
(c) In the figure (3) given below, DE is drawn parallel to the diagonal AC of the quadrilateral $A B C D$ to meet $B C$ produced at the point E. Prove that area of quad. $A B C D=$ area of $\triangle A B E$.

(1)

(2)

Solution:
(a) Given. ABCD and AEFB are two II gm on opposite sides of $A B$.
To prove. $a r$ (II gm ABCD) $+\operatorname{ar}$ (II gm AEFB) + ar (ll gm EFCD)
Construction.
Produced AB to meet CE at P .
Proof. II gm PQDC and II gm ABCD are on the same base CD and
 between same II lines.
$\therefore \quad \operatorname{ar}(\| \mathrm{gm} \mathrm{PQDC})=\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
Again || gm PQEF and II gm AEFB are on the same base EF and between same I| lines
$\therefore \quad \operatorname{ar}(\| \operatorname{gm~PQEF})=a r(\| \operatorname{gm~AEFB})$
Adding (1) and (2)
$a r(\| \mathrm{gm} \mathrm{PQDC})+a r \quad(\| \mathrm{gm} \mathrm{PQEF})=$ $\operatorname{ar}(\| \operatorname{gm~ABCD})+\operatorname{ar}(\| \ln \mathrm{AEFB})$
$\Rightarrow \quad a r(\| \mathrm{gm} \mathrm{EFCD})=a r(\| \mathrm{gm} \mathrm{ABCD})+$ ar (ll gm AEFB)
Hence, area of \| gm ABCD + area of \| gm AE FB $=$ area of $\| \mathrm{gm}$ EFCD.
(Q.E.D.)
(b) Given. $A \triangle A B C$, in which D is mid-point of the side $A B . P$ is any point on $B C, C Q \| P D$ to meet $A B$ in Q.
To prove. $\operatorname{ar}(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})$
Const. Join CD.
Proof.
$\therefore \mathrm{CD}$ is median of $\triangle \mathrm{ABC}$
$\therefore \operatorname{ar}(\triangle \mathrm{BCD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
(\because Median diviides a triangle into two triangle of equal area)
Now, $\triangle \mathrm{DPQ}$ and $\triangle \mathrm{DPC}$ are on
 the same Base DP and between the same parallel lines DP and QC.
$\therefore \operatorname{ar}(\triangle \mathrm{DPQ})=\operatorname{ar}(\triangle \mathrm{DPC})$
From (1),
$\operatorname{ar}(\triangle \mathrm{BCD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
or $\operatorname{ar}(\triangle \mathrm{BPD})+\operatorname{ar}(\triangle \mathrm{DPC})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
or $\operatorname{ar}(\triangle \mathrm{BPD})+\operatorname{ar}(\triangle \mathrm{DPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
[From (2)]
or $\operatorname{ar}(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
Hence, area of $\triangle \mathrm{BPQ}=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$.
(Q.E.D.)
(c) Given. ABCD is a $\| \mathrm{gm}$. DE is drawn parallel to the diagonal AC of the quadrilateral ABCD to meet BC produced at the point E . To prove. Area of quad.

$\mathrm{ABCD}=$ area of $\triangle \mathrm{ABE}$
Proof. DE || BC
(given)
$\therefore \quad \triangle \mathrm{ACE}$ and $\triangle \mathrm{ACD}$ on the same base AC and between the same \| lines AC and DE.
$\therefore \quad$ area of $\triangle \mathrm{ACE}=$ area of $\triangle \mathrm{ACD}$
Adding both sides area of $\triangle \mathrm{ABC}$.
area of $\triangle \mathrm{ACE}+$ area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{ACD}$

+ area of $\triangle A B C$.
or area of $\triangle \mathrm{ABE}=$ area of quad. ABCD
Hence, area of quad. $\mathrm{ABCD}=$ area of $\triangle \mathrm{ABE}$.
(Q.E.D.)

Question 12.

(a) In the figure given, ABCD and AEFG are two parallelograms. Prove that area of || gm ABCD = area of || gm AEFG.
(b) In the fig. (2) given below, the side $A B$ of the parallelogram $A B C D$ is produced to E. A st. line At through A is drawn parallel to $C E$ to meet CB produced at F and parallelogram BFGE is Completed prove that area of || gm BFGE=Area of || gmABCD.

(c) In the figure (3) given below $A B$ || $D C$ || $E F, A D$ || $B E a n d D E$ || $A F$. Prove the area ofDEFH is equal to the area of $A B C D$.

[^0](a) Given. ABCD (J) A a AFG are two parallelograms as shown in the figure.

To prove. Area $\mathrm{ABCD}=$ area AEFG
Construction. Join BG.

Proof. $\because \triangle \mathrm{ABG}$ and $\|$ gm ABCD are on the same base $A B$ and between the same parallels
\therefore area $\triangle \mathrm{ABG}=\frac{1}{2} \quad$ (area $\|$ gm ABCD)

Similarly $\triangle \mathrm{ABG}$ and $\| \mathrm{gm}$ AEFG are on the same base AG and between the same parallels.

$$
\therefore \operatorname{area}(\triangle \mathrm{ABG})=\frac{1}{2} \quad(\text { area } \| \mathrm{gm} \mathrm{AEFG})
$$

from (i) and (ii)
$\frac{1}{2}(\operatorname{area} \| \operatorname{gm~ABCD})=\frac{1}{2}$
(area $\| \mathrm{l}$ gm AEFG)
\therefore area $\|$ gm $\mathrm{ABCD}=$ area $\|$ gm AEFG.
Hence proved.
(b) Given. A || gm ABCD in which AB is produced to E . A straight line through A is drawn parallel to CE to meet CB produced at F , and $\|$ gm BFGE is: completed.

(2)

To prove. area of $\| \mathrm{gm} \mathrm{BFGE}=$ area of $\| \mathrm{gm}$ ABCD
Construction : Join AC and EF.
Proof. $\because \triangle \mathrm{AFC}$ and $\triangle \mathrm{AFE}$ are on the same base AF and between parallel lines AC and EF .
$\therefore \operatorname{ar}(\triangle \mathrm{AFC})=\operatorname{ar}(\triangle \mathrm{AFE})$
subtracting both sides ar $(\triangle \mathrm{ABF})$ ar $(\triangle \mathrm{AFC})$ $\operatorname{ar}(\triangle \mathrm{ABF})=\operatorname{ar}(\triangle \mathrm{AFE})-\operatorname{ar}(\triangle \mathrm{ABF})$
or $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle B E F)$
Multiplying bcin ines by 2 ,
$2 \operatorname{ar}(\triangle \mathrm{ABC})=2 \operatorname{ar}(\triangle \mathrm{BEF})$
or $\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=\operatorname{ar}(\| \mathrm{gm}$ BFGE$)$
(\because diagonals of $\| \mathrm{gm}$ divides it into two triangles
of equal areas.)
Hence, area of \| gm BFGE = area of \| gm ABCD.
(Q.E.D.)
(c) Given. $\mathrm{DC}\|\mathrm{EF}, \mathrm{AD}\| \mathrm{BE}$ and $\mathrm{DE} \| \mathrm{AF}$

To prove. $\operatorname{ar}(\mathrm{DEFH})=\operatorname{ar}(\mathrm{ABCD})$
Proof. $D E \| A F$ and $A D \| B E$

(3)
$\therefore \quad \mathrm{ADEG}$ is a $\| \mathrm{gm}$.
(given)
Now, || gm ABCD and || gm ADEG are on the same base $A D$ and between the same $\|$ lines $A D$ and $B E$.
$\therefore \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=a r \|(\cdot \mathrm{ADEG})$
Again DEFG is a $\| \mathrm{gm}$
($\because \mathrm{DE} \| \mathrm{AF}$ and $\mathrm{DC} \| \mathrm{EF}$ (given))
$\therefore \quad \| \mathrm{gm}$ DEFH and || gm ADEG are on the same base DE and between the same $\|$ lines DE and AF .
$\therefore \quad \operatorname{ar}(\| \operatorname{gm~DEFH})=\operatorname{ar}(\| \mathrm{gm} \mathrm{ADEG})$
From (1) and (2),
$\operatorname{ar}(\| \operatorname{gm~ABCD})=\operatorname{ar}(\| \operatorname{gmDEFH})$
or $\operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{DEFH}) \quad$ (Q.E.D.)

Question 13.
Any point D is taken on the side $B C$ of, $a \triangle A B C$ and $A D$ is produced to E such that $A D=D E$, prove that area of $\triangle B C E=$ area of $\triangle A B C$.

Solution:

Given. In $\triangle \mathrm{ABC}, \mathrm{D}$ is taken on the side BC .
AD produced to E such that $\mathrm{AD}=\mathrm{DE}$.

To prove. Area of $\triangle B C E=$ area of $\triangle A B C$
Proof. In $\triangle \mathrm{ABE}$,
$\mathrm{AD}=\mathrm{DE}$
$\therefore \mathrm{BD}$ is a median of $\triangle \mathrm{ABE}$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{BED})$
[median divides a triangle into two triangles of equal area]
Similarly, in $\triangle \mathrm{ACE}$
$C D$ is median of $\triangle A C E$.
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{CED})$
Adding (1) and (2),
$\operatorname{ar}(\triangle \mathrm{ABD})+\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\mathrm{BED})+\operatorname{ar}(\triangle \mathrm{CED})$
or, $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{BCE})$
Hence, area of $\triangle \mathrm{BCE}=$ area of $\triangle \mathrm{ABC}$. (Q.E.D.)

Question 14.

$A B C D$ is a rectangle and P is mid-point of $A B$. DP is produced to meet $C B$ at Q.
Prove that area of rectangle $\triangle B C D=$ area of $\triangle D Q C$.
Solution:

Given. $A B C D$ is a rectangle P is mid-point of $\mathrm{AB} D P$ is joined and produced meeting CB produced at Q .

To prove. Area rectangle $A B C D$

$$
=\operatorname{area}(\triangle \mathrm{DQC})
$$

Proof. In $\triangle A P D$ and $\triangle B Q P$,

$$
\mathrm{AP}=\mathrm{BP} \quad(\because \mathrm{D} \text { is mid-point of } \mathrm{AB})
$$

$\angle \mathrm{DAP}=\angle \mathrm{QBP} \quad\left(\right.$ each $\left.90^{\circ}\right)$
$\angle \mathrm{APD}=\angle \mathrm{BPQ}$ (vertically opposite angles)
$\therefore \quad \triangle \mathrm{APD} \cong \triangle \mathrm{BQP} \quad$ (ASA postulate)
$\therefore \quad$ area $\triangle A P D=$ area $\triangle B Q P$
Now area $A B C D=$ area $\triangle A P D$

$$
+ \text { area PBCD }
$$

$$
\begin{aligned}
& =\text { area } \triangle \mathrm{BQP}+\text { area } \mathrm{PBCD} \\
& =\text { area } \triangle \mathrm{DQC}
\end{aligned}
$$

Hence proved

Question P.Q.
$A B C D$ is a square, E and F are mid-points of the sides $A B$ and $A D$ respectively Prove that area of $\triangle C E F=\frac{3}{8}$ (area of square ABCD).
Solution:

Given. ABCD is a square. E and F are the midpoints of sides $A B$ and $A D$ espectively $E F$, EC and FC are joined.

To prove. area $\triangle C E F=\frac{3}{8}$
(area of square $A B C D$)
Proof. Let side of square $=a$
then area of square $\mathrm{ABCD}=a^{2}$
Now area of $\triangle \mathrm{AEF}=\frac{1}{2} \mathrm{AE} \times \mathrm{AF}$

$$
=\frac{1}{2} \times \frac{a}{2} \times \frac{a}{2}=\frac{a^{2}}{8}
$$

area of $\triangle E B C=\frac{1}{2} \times E B \times B C$

$$
=\frac{1}{2} \times \frac{a}{2} \times a=\frac{a^{2}}{4}
$$

and area of $\triangle \mathrm{CDF}=\frac{1}{2} \times \mathrm{CD} \times \mathrm{DF}$

$$
=\frac{1}{2} a \times \frac{a}{2}=\frac{a^{2}}{4}
$$

\therefore Area of $\triangle C E F=$ area of sq. $\mathrm{ABCD}-$ (area of $\Delta \mathrm{AE})+$ area of $\triangle \mathrm{EBC}+$ area of $\triangle \mathrm{CDF})$
$=a^{2}-\left(\frac{a^{2}}{8}+\frac{a^{2}}{4}+\frac{a^{2}}{4}\right)$
$=a^{2}-\left(\frac{a^{2}+2 a^{2}+2 a^{2}}{8}\right)=a^{2}-\frac{5 a^{2}}{8}$
$=\frac{3}{8} a^{2}=\frac{3}{8}$ area of sq. ABCD .

Question P.Q.
A line $P Q$ is drawn parallel to the side $B C$ of $\triangle A B C$. $B E$ is drawn parallel to $C A$ to meet QP (produced) at E and CF is drawn parallel to BA to meet PQ (produced) at F. Prove that area of $\triangle A B E=$ area of $\triangle A C F$.
Solution:

Given. A line PQ is drawn parallel to side BC of $\triangle A B C$.

$B E \| C A$ and $C F \| B A$ drawn which meet $P Q$ produced both sides at E and F respectively AE, AF and BF are joined.
To prove. area of $\triangle \mathrm{ABE}=$ area of $\triangle \mathrm{ACF}$
Proof. $\because \triangle \mathrm{ABE}$ and $\triangle \mathrm{CBE}$ are on the same base BE and between the same parallels
\therefore area $\triangle \mathrm{ABE}=$ area $\triangle \mathrm{CBE}$
Again $\because \triangle \mathrm{ACF}$ and $\triangle \mathrm{BCF}$ are on the same base CF and between the same parallels
\therefore area $\triangle \mathrm{ACF}=$ area $\triangle \mathrm{BCF}$
But $\triangle C B E$ and $\triangle C B F$ are on the same base $B C$
and between the same parallels:
\therefore area $\triangle C B E=$ area $\triangle B C F$
\therefore from (i), $(i i)$ and (iii)
area $\triangle \mathrm{ABE}=$ area $\triangle \mathrm{ACF}$
Hence proved.

Question 15.
(a) In the figure (1) given below, the perimeter of parallelogram is 42 cm . Calculate the lengths of the sides of the parallelogram.
(b) In the figure (2) given below, the perimeter of $\triangle A B C$ is 37 cm . If the lengths of the altitudes AM, BN and CL are $5 x, 6 x$, and $4 x$ respectively, Calculate the lengths of the sides of $\triangle A B C$.
(c) In the fig. (3) given below, ABCD is a parallelogram. P is a point on DC such that area of $\triangle D A P=25 \mathrm{~cm}^{2}$ and area of $\triangle B C P=15 \mathrm{~cm}^{2}$. Find
(i) area of || gm ABCD
(ii) DP : PC.

(3)
(2)

Solution:
(a) Given. Perimeter of \| gm $\mathrm{ABCD}=42 \mathrm{~cm}$.

Required. Lengths of the sides of $\| \mathrm{gm} \mathrm{ABCD}$.
Sol. Let $A B=P$

Then, perimeter of $\| \mathrm{gm}=2(\mathrm{AB}+\mathrm{BC})$

$$
\begin{aligned}
& \Rightarrow \quad 42=2(P+B C) \\
& \Rightarrow \quad \frac{42}{2}=\mathrm{P}+\mathrm{BC} \\
& \Rightarrow \quad 21=\mathrm{P}+\mathrm{BC}
\end{aligned}
$$

$\Rightarrow \quad B C=21-P$
Area of $\| \mathrm{gm} \mathrm{ABCD}=\mathrm{AB} \times \mathrm{DM}$
$=P \times 6=6 \mathrm{P}$
(Taking base AB and height DM)
Again, area of \| gm $\mathrm{ABCD}=\mathrm{BC} \times \mathrm{DN}$
(Taking Base BC and height DN)
$=(21-\mathrm{P}) \times 8=8(21-\mathrm{P})$
From (1) and (2),

$$
\begin{aligned}
& 6 \mathrm{P}=8(21-\mathrm{P}) \Rightarrow 6 \mathrm{P}=168-8 \mathrm{P} \\
& \Rightarrow \quad 6 \mathrm{P}+8 \mathrm{P}=168 \Rightarrow 14 \mathrm{P}=168 \\
& \Rightarrow \quad \mathrm{P}=\frac{168}{14}=12
\end{aligned}
$$

Hence, sides of $\| \mathrm{gm}, \mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{BC}=(21-12) \mathrm{cm}=9 \mathrm{~cm}$.
(b) Given. The perimeter of $\triangle \mathrm{ABC}=37 \mathrm{~cm}$. Length of the Altitudes AM, BN, and CL are $5 x$, $6 x$, and $4 x$ respectively.
Required. Lengths of $B C, C A$, and $A B$.
Sol. Let $\mathrm{BC}=\mathrm{P}$ and $\mathrm{CA}=\mathrm{Q}$

Then perimeter of $\triangle \mathrm{ABC}$
$=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
$\Rightarrow \quad 37=\mathrm{AB}+\mathrm{P}+\mathrm{Q}$
$\Rightarrow \quad \mathrm{AB}=37-\mathrm{P}-\mathrm{Q}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}=\frac{1}{2} \mathrm{CA} \times \mathrm{BN}$
$=\frac{1}{2} \times \mathrm{AB} \times \mathrm{CL}$
i.e. $\frac{1}{2} \times \mathrm{P} \times 5 x=\frac{1}{2} \times \mathrm{Q} \times 6 x$
$=\frac{1}{2}(37-\mathrm{P}-\mathrm{Q}) \times 4 x \Rightarrow \frac{5 \mathrm{P}}{2}=3 \mathrm{Q}=2(37-\mathrm{P}-\mathrm{Q})$
Taking first two parts
$\frac{5 \mathrm{P}}{2}=3 \mathrm{Q} \Rightarrow .5 \mathrm{P}=6 \mathrm{Q} \quad \Rightarrow \quad 5 \mathrm{P}-6 \mathrm{Q}=0$
Taking second and third parts
$3 \mathrm{Q}=2(37-\mathrm{P}-\mathrm{Q}) \Rightarrow 3 \mathrm{Q}=74-2 \mathrm{P}-2 \mathrm{Q}$
$\Rightarrow \quad 3 \mathrm{Q}+2 \mathrm{Q}+2 \mathrm{P}=74 \quad \Rightarrow \quad 2 \mathrm{P}+5 \mathrm{Q}=74$

Multiplying equation (1) by (5) \& (2) by (6), we get

Adding, \quad| $25 \mathrm{P}-30 \mathrm{Q}=0$ |
| :--- |
| $12 \mathrm{P}+30 \mathrm{Q}=444$ |
| $37 \mathrm{P}=444$ |

$\Rightarrow \quad P=\frac{444}{37}=12$
Substituting the value of P in equation (1), we get

$$
\begin{aligned}
& 5 \times 12-6 Q=0 \Rightarrow 60-6 Q=0 \Rightarrow 60=6 Q \\
& \Rightarrow Q=\frac{60}{6}=10
\end{aligned}
$$

Hence, $\mathrm{BC}=\mathrm{P}=12 \mathrm{~cm}, \mathrm{CA}=\mathrm{Q}=10 \mathrm{~cm}$ and $A B=37-P-Q=37-12-10=15 \mathrm{~cm}$.
(c) Given. ABCD is a $l \mathrm{gm}$. P is a point on DC such that ar $(\triangle \mathrm{DAP})=25 \mathrm{~cm}^{2}$ and ar $(\triangle \mathrm{BCP})=15 \mathrm{~cm}^{2}$
Required. (i) ar (ll gm ABCD) (ii) DP : PC
Sol. (i) $a r$ ($\triangle \mathrm{APB})=\frac{1}{2} \operatorname{ar}(\mathrm{I} \mid \mathrm{gm} \mathrm{ABCD})$
(\because Area of a triangle is half that of a $\|$ gm on the same base and between the same parallels)

(3)

Then $\frac{1}{2} \operatorname{ar}(\| l \mathrm{gm} \mathrm{ABCD})=\operatorname{ar}(\triangle \mathrm{DAP})+\operatorname{ar}(\triangle \mathrm{BCP})$
$=25 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}=40 \mathrm{~cm}^{2}$
$\Rightarrow \operatorname{ar}(\| \operatorname{gm~ABCD})=2 \times 40 \mathrm{~cm}^{2}=80 \mathrm{~cm}^{2}$
(ii) Since $\triangle \mathrm{ADP}$ and $\triangle \mathrm{BCP}$ are on the same base $C D$ and between same \|l lines $C D$ and $A B$.

$$
\begin{aligned}
& \therefore \frac{\operatorname{ar}(\triangle \mathrm{DAP})}{\operatorname{ar}(\triangle \mathrm{BCP})}=\frac{\mathrm{DP}}{\mathrm{PC}} \\
& \Rightarrow \frac{25}{15}=\frac{\mathrm{DP}}{\mathrm{PC}} \Rightarrow \frac{\mathrm{DP}}{\mathrm{PC}}=\frac{25}{15}=\frac{5}{3} \\
& \Rightarrow \mathrm{DP}: P C=5: 3
\end{aligned}
$$

Question 16.
In the adjoining figure, E is mid-point of the side $A B$ of a triangle $A B C$ and EBCF is a parallelogram. If the area of $\triangle A B C$ is 25 sq. units, find the area of || gm EBCF. Solution:

Let EF , side of $\|$ gm BCEF meets AC at G .
$\because \mathrm{E}$ is mid point and $\mathrm{EF} \| \mathrm{BC}$
$\therefore \mathrm{G}$ is mid point of AC .
$\Rightarrow \quad \mathrm{AG}=\mathrm{GC}$
Now in $\triangle \mathrm{AEG}$ and $\triangle \mathrm{CFG}$,
$\angle \mathrm{EAG}, \angle \mathrm{GCF} \quad$ (Alternate angles)
$\angle \mathrm{EGA}=\angle \mathrm{CGF}$
(vertically opposite angles)

$$
\begin{aligned}
& \mathrm{AG}=\mathrm{GC} \\
\therefore \quad & \triangle \mathrm{AEG} \cong \triangle \mathrm{CFG} \\
\Rightarrow & \text { area } \triangle \mathrm{AEG}=\text { area } \Delta \mathrm{CFG} .
\end{aligned}
$$

(proved)

Now

$$
\begin{aligned}
& \quad \text { area } \| \mathrm{gm} \mathrm{EBCF}=\text { area } \mathrm{BCGE}+\text { area } \triangle \mathrm{CFG} \\
& =\text { area } \mathrm{BCGE}+\text { area } \triangle \mathrm{AEG}=\text { area } \triangle \mathrm{ABC}
\end{aligned}
$$

But area $\triangle A B C=25$ sq. units.
\therefore area $\|$ gm EBCF $=25$ sq. units

Question 17.

(a) In the figure (1) given below, $B C$ || $A E$ and $C D|\mid B E$. Prove that: area of $\triangle A B C=$ area of $\triangle E B D$.
(b) In the Ilgure (2) given below, ABC is right angled triangle at A. AGFB is a square on the side $A B$ and $B C D E$ is a square on the hypotenuse $B C$. If $A N \perp E D$, prove that:
(i) $\triangle \mathrm{BCF} \cong \triangle \mathrm{ABE}$.
(ii)arca of square ABFG = area of rectangle BENM.
'a) Given. $\mathrm{BC} \| \mathrm{AE}$ and $\mathrm{CD} \| \mathrm{BE}$
To prove. Area of $\triangle \mathrm{ABC}$
$=$ area of \triangle EBD.
Construction. Join CE
Proof. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EBC}$ are on the same Base BC and between the same II lines $A E$ and $B C$.

(1)
$\therefore a r(\triangle \mathrm{ABC})=a r$ ($\triangle \mathrm{EBC}$)
$\because \quad \triangle E B C$ and $\triangle E B D$ are on the same base $B E$ and between same $\|$ lines $B E$ and $C D$.
$\therefore \operatorname{ar}(\triangle \mathrm{EBC})=\operatorname{ar}(\triangle \mathrm{EBD})$
From (1) and (2)
$\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{EBD})$
Hence, area of $\triangle A B C=$ area of $\triangle E B D \quad$ (Q.E.D.)
(b) Given. A right angled $\triangle A B C$ in which $\angle A=90^{\circ}$. Squares AGFB and BCDE are drawn on the side $A B$ and hypotenuse $B C$ of $\triangle A B C$. $A N \perp E D$ meeting $B C$ at M.
To Prove: (i) $\triangle B C F \cong \triangle A B E$
(ii) area of square $\mathrm{ABFG}=$ area of rectangle BENM

(2)

Solution:

```
Proof: (i) \(\angle \mathrm{FBC}=\angle \mathrm{FBA}+\angle \mathrm{ABC}\)
    \(\Rightarrow \quad \angle \mathrm{FBC}=90^{\circ}+\angle \mathrm{ABC}\)
\(\angle \mathrm{ABE}=\angle \mathrm{EAC}+\angle \mathrm{ABC}\)
\(\angle \mathrm{ABE}=90^{\circ}+\angle \mathrm{ABC}\)
From (1) and (2),
\(\angle \mathrm{FBC}=\angle \mathrm{ABE}\)
```

Now, in $\triangle B C F$ and $\triangle A B E$
$\mathrm{BF}=\mathrm{AB}$
$\angle \mathrm{FBC}=\angle \mathrm{ABE}$
[From (3)]
$B C=B E$
$\therefore \triangle \mathrm{BCF} \cong \triangle \mathrm{ABE}$
(By S.A.S. axiom of congruency)
(ii) $\triangle \mathrm{BCF} \cong \triangle \mathrm{ABE}$ (Proved in part (i) above)
$\operatorname{ar}(\triangle \mathrm{BCF})=\operatorname{ar}(\triangle \mathrm{ABE})$
$\angle \mathrm{BAG}+\angle \mathrm{BAC}=90^{\circ}+90^{\circ}$
$\Rightarrow \angle \mathrm{BAG}+\angle \mathrm{BAC}=180^{\circ}$
$\therefore \quad$ GAC is a straight line.
Now, \triangle BCF and square AGFB are on the same base BF and between the same II lines BF and GC.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{BCF})=\frac{1}{2} \operatorname{ar}$ (square AGFB)
Again, $\triangle \mathrm{ABE}$ and rectangle BENM are on the same base BE and between the same \| lines BE and AN.
$\therefore \operatorname{ar}(\triangle \mathrm{ABE})=\frac{1}{2} \operatorname{ar}$ (Rectangle BENM)
From (4), (5) and (6)
$\frac{1}{2} \operatorname{ar}$ (square AGFB) $=\frac{1}{2} \operatorname{ar}$ (Rectangle BENM)
$\Rightarrow \quad a r$ (square AGFB$)=a r$ (Rectangle BENM)
Hence, area of square AGFB = area of Rectangle
BENM.
(Q.E.D.)

Multiple Choice Questions

Choose the correct answer from the given four options (1 to 8): Question 1.

In the given figure, if $\mathrm{I}\|\mathrm{m}, \mathrm{AF}\| \mathrm{BE}, \mathrm{FC} \perp \mathrm{m}$ and $\mathrm{ED} \perp \mathrm{m}$, then the correct statement is
(a) area of $\| \mathrm{ABEF}=$ area of rect. CDEF
(b) area of $\|$ ABEF $=$ area of quad. CBEF
(c) area of $\| \mathrm{ABEF}=2$ area of $\triangle \mathrm{ACF}$
(d) area of $\| A B E F=2$ area of $\triangle E B D$

Solution:

In the given figure,
$1\|m, A F\| B E, F C \perp m$ and $E D \perp m$
$\because \| g m$ ABEF and rectangle CDEF are on the same base EF and between the same parallel
\therefore area $\| g m$ ABEF $=$ area rect. CDEF (a)

Question 2.

Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$
(d) $3: 1$

Solution:
A triangle and a parallelogram are on the same base and between same parallel, then
\therefore They are equal in area
\therefore Their ratio 1:1 (b)

Question 3.

If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of area of the triangle to the area of parallelogram is
(a) $1: 3$
(b) $1: 2$
(c) $3: 1$
(d) $1: 4$

Solution:
A triangle and a parallelogram are on the same base and between same parallel, then area of
triangle $=\frac{1}{2}$ area $\| \mathrm{gm}$
\therefore Their ratio 1:2(b)

Question 4.
A median of a triangle divides it into two
(a) triangles of equal area
(b) congruent triangles
(c) right triangles
(d) isosceles triangles

Solution:
A median of a triangle divides it into two triangle equal in area. (a)

Question 5.
In the given figure, area of parallelogram $A B C D$ is
(a) $\mathrm{AB} \times \mathrm{BM}$
(b) BC $\times \mathrm{BN}$
(c) $\mathrm{DC} \times \mathrm{DL}$
(d) $A D \times D L$

Solution:
In the given figure,
Area of $\| g m ~ A B C D=A B \times D L$ or $D C \times D L(\because A B=D C)(c)$

Question 6.
The mid-points of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to
(a) $\frac{1}{2}$ area of $\triangle \mathrm{ABC}$
(b) $\frac{1}{3}$ area of $\triangle A B C$
(c) $\frac{1}{4}$ area of $\triangle A B C$
(d) area of $\triangle A B C$

Solution:

The mid-points of the sides of a triangle along with any of vertices as the fourth point makes
a parallelogram of area equal to $\frac{1}{2}$ the area of $\triangle \mathrm{ABC}$

i.e., area $\| \mathrm{gm} \mathrm{DEAF}=\frac{1}{2}$ area $\triangle \mathrm{ABC}$

Question 7.

In the given figure, $A B C D$ is a trapezium with parallel sides $A B=a \operatorname{cm}$ and $D C=b$ cm . E and F are mid-points of the non parallel sides. The ratio of area of ABEF and area of EFCD is
(a) a:b
(b) $(3 a+b):(a+3 b)$
(c) $(a+3 b):(3 a+b)$
(d) $(2 a+b):(3 a+b)$

Solution:

In the figure, ABCD is a trapezium in which
$A B \| D C$
$\mathrm{AB}=a, \mathrm{DC}=b$
E and F are mid points on DA and $C B$ respectively
Let h be the height
$(\because \mathrm{EF}\|\mathrm{AB}\| \mathrm{DC})$
$\therefore \mathrm{EF}=\frac{1}{2}(a+b)$

Area of trapezium ABFE

$$
\begin{aligned}
& =\left[\frac{1}{2} \frac{(a+b)}{2} \times \frac{h}{2}\right] \\
& =\frac{h}{4}\left(\frac{2 a+a+b}{2}\right) \\
& =\frac{h}{8}(3 a+b)
\end{aligned}
$$

and area of trap. EFCD
$=\frac{1}{2}[\mathrm{EF}+\mathrm{DC}] \times \frac{h}{2}$
$=\frac{h}{4}\left[\frac{a+b}{2}+b\right]=\frac{h}{4}\left[\frac{a+b+2 b}{2}\right]$
$=\frac{h}{4}[a+3 b]$
\therefore Ratio $=\frac{h}{8}(3 a+b): \frac{h}{8}(a+3 b)$
$=(3 a+b):(a+3 b)$
(b)

Question 8.

In the given figure, $A B$ || $D C$ and $A B \neq D C$. If the diagonals $A C$ and $B D$ of the trapezium $A B C D$ intersect at O, then which of the following statements is not true?
(a) area of $\triangle A B C=$ area of $\triangle A B D$
(b) area of $\triangle A C D=$ area of $\triangle B C D$
(c) area of $\triangle O A B=$ area of $\triangle O C D$
(d) area of $\triangle O A D=$ area of $\triangle O B C$

Solution:
In the trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{DC}$
$\mathrm{AB} \neq \mathrm{DC}$
The diagonals BD and AC intersect each other at O
Only statement area of $\triangle \mathrm{OAB}$ is not equal to area $\triangle C O D$
Other all statements are true
Only (b) is not true.

Chapter test

Question 1.

(a) In the figure (1) given below, $A B C D$ is a rectangle (not drawn to scale) with side $A B=4 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$. Find :
(i) the area of parallelogram DEFC
(ii) area of $\triangle E F G$.
(b) In the figure (2) given below, PQRS is a parallelogram formed by drawing lines parallel to the diagonals of a quadrilateral ABCD through its corners. Prove that area of || gm PQRS = 2 x area of quad. ABCD.

(I)

(2)

Solution:
(a) Given. ABCD is a rectangle $\mathrm{AB}=4$ cm and $\mathrm{AD}=6 \mathrm{~cm}$.
Required. (i) The area of $1 / \mathrm{gm}$ DEFC.
(ii) area of $\triangle \mathrm{EFG}$
(i) Since $A B=4 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$ (given)
\therefore Area of rectangle $A B C D=A B \times A D$
$=4 \mathrm{~cm} \times 6 \mathrm{~cm}=24 \mathrm{~cm}^{2}$
Now, area of rectangle ABCD
$=$ area of $|\mid ~ g m ~ D E F C ~$
(\because Both are on the same
Base and between the same parallel lines)
\Rightarrow Area of $\|$ gm DEFC
$=24 \mathrm{~cm}^{2}$

(1)
(ii) Area of $\triangle \mathrm{EFG}=\frac{1}{2}$ (area of II gm DEFC)
(\therefore Both are on the same base and between the same parallel lines)
\therefore Area of $\triangle \mathrm{EFG}=\frac{1}{2} \times 24 \mathrm{~cm}^{2}=12 \mathrm{~cm}^{2}$ Ans.
(b) Given. PQRS is a $\| \mathrm{gm}$ formed by drawing line: parallel to the diagonals of quadrilateral $A B C D$ through its corners.
To prove. Area of $\| \mathrm{gm} \mathrm{PQRS}=2$. area of quad ABCD

(2)

Proof. $\operatorname{ar}(\triangle \mathrm{ACD})=\frac{1}{2} \operatorname{ar}(| | \mathrm{gm} \mathrm{ACRS})$
[\therefore both are on same base AC and between the same \| AC and SR]
$\Rightarrow \quad a r(\| \operatorname{gm~ACRS})=2 a r(\triangle \mathrm{ACD})$
Similarly,
$\operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \triangle \mathrm{APQC})$
$\Rightarrow \quad \operatorname{ar}(\| \mathrm{gm} \mathrm{APQC})=2 \operatorname{ar}(\triangle \mathrm{ABC})$
Adding (1) from (2),
$a r$ ($\| \mathrm{gm}$ ACRS) $+a r$ ($\| \mathrm{gm} \mathrm{APQC}$) $=$
$2 \operatorname{ar}(\triangle \mathrm{ACD})+2 \operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \quad(\| \ln \mathrm{PQRS})=2[\operatorname{ar}(\triangle \mathrm{ACD})+\operatorname{ar}(\triangle \mathrm{ABC})]$
$\Rightarrow \quad a r(\| \mathrm{gm} \mathrm{PQRS})=2 a r$ (quad. ABCD)
Hence, area of il $\mathrm{gm} P Q R S=2$. area of quad.
ABCD.
(Q.E.D.)

Question P.Q.

In the adjoining figure, $A B C D$ and $A B E F$ are parallelogram and P is any point on DC. If area of || gm ABCD $=90 \mathrm{~cm} 2$, find:
(i) area of || gm ABEF
(ii) area of $\triangle A B P$.
(iii) area of $\triangle \mathrm{BEF}$.

Solution:

In the given figure,
ABCD and ABEF are parallelogram P is an point on DC

Area of $\| \mathrm{gm} \mathrm{ABCD}=90 \mathrm{~cm}^{2}$
$\| g m ~ A B C D$ and ABEF are on the same base
$A B$ are between the same parallels
(i) \therefore Area of $\| \mathrm{gm}$ ABEF $=$ area of $\| \mathrm{gm} \mathrm{ABCD}=$ $90 \mathrm{~cm}^{2}$
(ii) $\because \triangle \mathrm{ABP}$ and $\| \mathrm{gm} \mathrm{ABCD}$ are on the same base $A B$ and between the same parallels
\therefore Area $\triangle \mathrm{ABP}=\frac{1}{2}$ area $\| \mathrm{gm} \mathrm{ABCD}$

$$
=\frac{1}{2} \times 90 \mathrm{~cm}^{2}=45 \mathrm{~cm}^{2}
$$

(iii) $\because \triangle \mathrm{BEF}$ and $\| \mathrm{gm} \mathrm{ABEF}$ are on the same base EF and between the same parallels
\therefore Area $\triangle \mathrm{BEF}=\frac{1}{2}$ area $\| \mathrm{gm} \mathrm{ABEF}$

$$
=\frac{1}{2} \times 90=45 \mathrm{~cm}^{2}
$$

Question 2.

In the parallelogram $A B C D, P$ is a point on the side $A B$ and Q is a point on the side BC. Prove that
(i) area of $\triangle C P D=$ area of $\triangle A Q D$
(ii)area of $\triangle A D Q=$ area of $\triangle A P D+$ area of $\triangle C P B$.

Solution:
Given. \| gm ABCD in which P is a point on $A B$ and Q is a point on $B C$.
To prove. (i) $\operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{AQD})$
(ii) $\operatorname{ar}(\triangle \mathrm{ADQ})=\operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{CPB})$

Proof. $\triangle \mathrm{CPD}$ and II gm ABCD are on the same base $C D$ and between the same parallels lines $A B$ and CD.
$\therefore \quad \operatorname{ar}(\triangle C P D)=\frac{1}{2} \operatorname{ar}(\| \operatorname{gm~ABCD})$
$\triangle \mathrm{ADQ}$ and $\| \mathrm{gm} \mathrm{ABCD}$ are on the same base AD and between the same \| lines $A D$ and $B C$,
$\operatorname{ar}(\triangle \mathrm{ADQ})=\frac{1}{2}(\| \operatorname{gm~ABCD})$
From (1) and (2), $\operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{ADQ})$ or $\operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{ADQ})$ (Q.E.D.)
(ii) $\operatorname{ar}(\triangle \mathrm{ADQ})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
(Proved in part (i) above)
$\Rightarrow \quad 2 \operatorname{ar}(\triangle \mathrm{ADQ})=\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ADQ})+\operatorname{ar}(\triangle \mathrm{ADQ})=\operatorname{ar}(\| \operatorname{gm} \mathrm{ABCD})$
But $\operatorname{ar}(\triangle \mathrm{ADQ})=\operatorname{ar}(\triangle \mathrm{CPD})$
(Proved in part (i) above)
From (3) and (4),

$$
\begin{align*}
& \operatorname{ar}(\triangle \mathrm{ADQ})+\operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\| \operatorname{gm~} \mathrm{ABCD}) \\
& \Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ADQ})+\operatorname{ar}(\triangle \mathrm{CPD}) \\
& =\operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{CPD})+\operatorname{ar}(\triangle \mathrm{CPB}) \\
& \Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ADQ})=\operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{CPB}) \tag{Q.E.D.}
\end{align*}
$$

Question 3.

In the adjoining figure, X and Y are points on the side LN of triangle LMN.
Through X, a line is drawn parallel to LM to meet MN at Z. Prove that area of $\Delta \mathrm{LZ} Y$ = area of quad. MZYX.

Solution:
Given : In the figure,
X and Y are points on side LN of $\triangle \mathrm{LMN}$.
Through X , a line $\mathrm{XZ} \| \mathrm{LM}$ is drawn which meets
MN at Z .
To prove : area of $\Delta L Z Y=$ area of quad.

MZYX

Construction : Join MX, ZY and LZ
Proof: $\because \mathrm{LM} \| \mathrm{XZ}$
and $\triangle L Z X$ and $\triangle M Z X$ are on the same base
$X Z$ and between the same parallels
$\therefore \quad$ area $\triangle L Z X=$ area $\triangle M Z X$
Adding area $\triangle X Z Y$ to both sides
area $\Delta L Z X+$ area $\triangle X Z Y$
$=$ area $\triangle \mathrm{MZX}+$ area $\triangle \mathrm{XZY}$
\Rightarrow area $\triangle \mathrm{LZY}=$ area quadrilateral MZYX

Question P.Q.
If D is a point on the base $B C$ of a triangle $A B C$ such that $2 B D=D C$, prove that area of $\triangle A B D=\frac{1}{3}$ area of $\triangle A B C$.
Solution:

Given. $\triangle \mathrm{ABC}$ in which base BC . D is a point on BC such that $2 \mathrm{BD}=\mathrm{DC}$.
To prove. $\operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{3} \operatorname{ar}(\mathrm{ABC})$

Construction. Let P is the mid-point of DC join $\mathrm{AD}=\mathrm{DC}$
$\Rightarrow \quad \mathrm{BD}=\frac{1}{2} \mathrm{DC}$
i.e. $\quad \mathrm{BD}=\mathrm{DP} \quad$ (P is mid-point of DC)
$\therefore \quad \mathrm{D}$ is mid-point of BP .
In $\triangle A B P, A D$ is median of $B P$
(D is mid-point of BP)
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADP})$
Again in $\triangle A D C, A P$ is the median of $D C$.
(P is mid-point of DC)
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ADP})=\operatorname{ar}(\triangle \mathrm{APC})$
From (1) and (2),
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADP})=\operatorname{ar}(\triangle \mathrm{APC})$
$\therefore \quad \triangle \mathrm{ABC}$ is divided into three equal triangles
and each \triangle will be of $\frac{1}{3} \triangle A B C$.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
(Q.E.D.)

Question 4.

Perpendiculars are drawn from a point within an equilateral triangle to the three sides. Prove that the sum of the three perpendiculars is equal to the altitude of the triangle.
Solution:

ABC is an equilateral triangle. i.e. $\mathrm{AB}=\mathrm{BC}$ $=C A . P$ is any point within an equilateral triangle to the three sides.

PN, PM, and PL are perpendicular on side AB, AC and $B C$ respectively. $A D$ is any altitude from point A on side $B C$.
To prove. $\mathrm{AD}=\mathrm{NP}+\mathrm{LP}+\mathrm{MP}$
Construction. Join PA, PB and PC.
Proof. Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times$ Base \times Altitude
$\operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}$
Now, area of $\triangle A P B=\frac{1}{2} \times A B \times N P$
area of $\triangle A P C=\frac{1}{2} \times A C \times M P$
area of $\triangle \mathrm{BPC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{LP}$
Adding (2), (3) and (4)
$\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{APC})+\operatorname{ar}(\triangle \mathrm{BPC})$
$=\frac{1}{2} \times \mathrm{AB} \times \mathrm{NP}+\frac{1}{2} \times \mathrm{AC} \times \mathrm{MP}+\frac{1}{2} \times \mathrm{BC} \times \mathrm{LP}$
$\operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2}[\mathrm{AB} \times \mathrm{NP}+\mathrm{AC} \times \mathrm{MP} \times \mathrm{BC} \times \mathrm{LP}]$
$=\frac{1}{2}[B C \times N P+B C \times M P \times B C \times L P]$

$$
\begin{equation*}
(\because \mathrm{AB}=\mathrm{AC}=\mathrm{CA}) \tag{5}
\end{equation*}
$$

$\operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \times \mathrm{BC}[\mathrm{NP}+\mathrm{MP}+\mathrm{LP}]$
From (4) and (5),
$\frac{1}{2} \times B C \times A D=\frac{1}{2} \times B C \times(N P+L P+M P)$
$\Rightarrow \quad A D=N P+L P+M P$
$\Rightarrow \quad N P+L P+M P=A D$
i.e.sum of three perpendiculars is equal to the altitude of the triangle.

Question 5.

If each diagonal of a quadrilateral' divides it into two triangles of equal areas, then prove that the quadrilateral is a parallelogram.
Solution:

Given : In quadrilateral $A B C D$, diagonal AC bisects the quadrilateral ABCD in two triangle of equal area i.e.

$\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ADC})$
To prove : ABCD is a parallelogram.
Proof : Join BD.
Proof: \because Diagonals of quad. ABCD divides the quad. into two triangles of equal area.

$$
\begin{gathered}
\therefore \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ABD}) \\
=\frac{1}{2} \text { ar }(\mathrm{ABCD})
\end{gathered}
$$

But, these are on the same base AB
\therefore Their heights are equal
$\therefore \mathrm{DC} \| \mathrm{AB}$
Similarly, we can prove that :
$\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{BDC})$
$\therefore \mathrm{BC} \| \mathrm{AD}$
From (i) and (ii)
$A B C D$ is a parallelogram.
Hence proved.

Question 6.
In the given figure, $A B C D$ is a parallelogram in which $B C$ is produced to E such that $C E=B C$. $A E$ intersects $C D$ at F. If area of $\triangle D F B=3 \mathbf{c m}^{2}$, find the area of parallelogram ABCD.

Solution:

In the figure, ABCD is a parallelogram $B C$ is produced to E such that $C E=B C$

Join BD and AE
which intersects DC at F
Join BF, AC and DE
\therefore Area of $\triangle \mathrm{DFB}=3 \mathrm{~cm}^{2}$
Find the area of $\| g m \mathrm{ABCD}$
Solution : \because In $\triangle A B E, C$ is mid-point of $B E$
and $C D \| A B$
$\therefore \mathrm{F}$ is mid-point of AE and CD
\therefore ABED is a $\| \mathrm{gm}$
(\because Diagonals AE and CD bisect each other
at F)
$\because \mathrm{BD}$ is the diagonal of $\| \mathrm{gm} \mathrm{ABCD}$

$$
\triangle \mathrm{BCD}=\frac{1}{2} \| \mathrm{gm} \mathrm{ABCD}
$$

\because F is mid-point of DC
$\therefore \triangle \mathrm{DFB}=\frac{1}{2} \triangle \mathrm{BCD}$
$\Rightarrow \triangle \mathrm{DFB}=\frac{1}{2} \times \frac{1}{2}(\| \mathrm{gm} \mathrm{ABCD})$
$\Rightarrow \triangle \mathrm{DFB}=\frac{1}{4}(\| \mathrm{gm} \mathrm{ABCD})$
\therefore area $\| g m ~ A B C D=4$ area $\triangle D F B$

$$
=4 \times 3=12 \mathrm{~cm}^{2}
$$

Question 7.

In the given figure, $A B C D$ is a square. E and F are mid-points of sides $B C$ and $C D$ respectively. If R is mid-point of $E F$, prove that: area of $\triangle A E R=$ area of $\triangle A F R$.
Solution:

Given : In square $\mathrm{ABCD}, \mathrm{BD}$ is diagonals E and F are mid-point of $B C$ and $C D$ respectively. R is mid-point of $E F$.
To prove : area ($\triangle \mathrm{AER}=$ area $(\triangle \mathrm{AFR})$
Proof: In $\triangle A B E$ and $\triangle A D F$
$\mathrm{AB}=\mathrm{AD}$
$\angle \mathrm{B}=\angle \mathrm{D}$
(Sides of a square)
$\mathrm{BE}=\mathrm{CE}$
(E is mid-point of BC)
$\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{ADF}$ (SAS axiom)
$\therefore \mathrm{AE}=\mathrm{AF}$
Again in $\triangle A E R$ and $\triangle A F R$

$$
\begin{array}{lr}
\mathrm{AE}=\mathrm{AF} & \text { (Produced) } \\
\mathrm{AR}=\mathrm{AR} & \text { (Common) } \tag{c.p.c.t.}\\
\mathrm{ER}=\mathrm{FR} & \text { (R is mid-point of } \mathrm{EF} \text {) }
\end{array}
$$

$\therefore \triangle \mathrm{AER} \cong \triangle \mathrm{AFR}$
(SSS axiom)
$\therefore \operatorname{area}(\triangle \mathrm{AER})=\operatorname{area}(\triangle \mathrm{AFR})$

Question 8.
In the given figure, X and Y are mid-points of the sides $A C$ and $A B$ respectively of $\triangle A B C$. $Q P \| B C$ and $C Y Q$ and $B X P$ are straight lines. Prove that area of $\triangle A B P=$ area of $\triangle A C Q$.

Solution:
Given : In the given figure,
X and Y are the mid-points of the sides $A C$ and $A B$ respectively of $\triangle A B C$ QP \| BC
CYQ and BXP are straight lines
To prove : $\operatorname{area}(\triangle A B P)=\operatorname{area}(\triangle A C Q)$
Proof: $\because \mathrm{X}$ and Y are the mid-points of sides
$A C$ and $A B$ respectively
$\therefore \mathrm{YX} \| \mathrm{BC}$
But QP \|BC
$\therefore \mathrm{QP}\|\mathrm{BC}\| \mathrm{YX}$
In $\triangle B A P, Y$ is mid of $A B$ and $Y X \| Q P$
$\therefore \mathrm{X}$ is mid-point of BP
$\therefore \mathrm{YX}=\frac{1}{2} \mathrm{AP}$
Similarly we can prove in $\triangle \mathrm{AQC}$
$\mathrm{YX}=\frac{1}{2} \mathrm{QA}$
From (i) and (ii),
$\mathrm{QA}=\mathrm{AP}$
Now $\triangle A B P$ and $\triangle A C Q$ are on the equal base and between the same parallel lines
$\therefore \operatorname{area}(\triangle \mathrm{ABP})=\operatorname{area}(\triangle \mathrm{ACQ})$

[^0]: Solution:

