Logarithms

Exercise 9.1

Question 1. Convert the following to logarithmic form: (i) $5^2 = 25$ (ii) a^₅ =64 (iii) 7× =100 (iv) 9° = 1 (v) $6^1 = 6$ (vi) $3^{-2} = \frac{1}{9}$ (vii) 10⁻² = 0.01 (viii) $(81)^{\frac{3}{4}} = 27$ Solution: (i) $5^2 = 25 \implies \log_5 25 = 2$ (ii) $a^5 = 64 \implies \log_a 64 = 5$ (iii) $7^x = 100 \implies \log_7 100 = x$ $(iv) 9^\circ = 1 \implies \log_0 1 = 0$ $(\nu) \quad 6^1 = 6 \quad \Longrightarrow \quad \log_6 6 = 1$ (vi) $3^{-2} = \frac{1}{9} \implies \log_3 \frac{1}{9} = -2$ (vii) $10^{-2} = 0.01 \implies \log_{10} 0.01 = -2$ (viii) $(81)^{\frac{3}{4}} = 27 \implies \log_{81} 27 = \frac{3}{4}$

Question 2.

Convert the following into exponential form: (i) $\log_2 32 = 5$ (ii) $\log_3 81=4$ (iii) $\log_3 \frac{1}{3}= -1$ (iv) $\log_3 4=\frac{2}{3}$ (v) $\log_8 32=\frac{5}{3}$ (vi) $\log_{10} (0.001) = -3$ (Vii) $\log_2 0.25 = -2$ (viii) $\log_a (\frac{1}{a}) = -1$ Solution:

(i)
$$\log_2 32 = 5 \implies 2^5 = 32$$

(ii) $\log_3 81 = 4 \implies 3^4 = 81$
(iii) $\log_3 \frac{1}{3} = -1 \implies 3^{-1} = \frac{1}{3}$
(iv) $\log_8 4 = \frac{2}{3} \implies (8)^{\frac{2}{3}} = 4$
(v) $\log_8 32 = \frac{5}{3} \implies (8)^{\frac{5}{3}} = 32$
(vi) $\log_{10} (0.001) = -3 \implies 10^{-3} = 0.001$
(vii) $\log_2 0.25 = -2 \implies 2^{-2} = 0.25$
(viii) $\log_a \frac{1}{a} = -1 \implies a^{-1} = \frac{1}{a}$

•

Question 3.

By converting to exponential form, find the values of: (i) $\log_2 16$ (ii) $\log_5 125$ (iii) $\log_4 8$ (iv) $\log_9 27$ (v) $\log_{10}(.01)$ (vi) $\log_7 \frac{1}{7}$ (vii) $\log_5 256$ (Viii) $\log_2 0.25$ Solution:

(i) Let,
$$\log_2 16 = x$$

$$\Rightarrow (2)^{v} = 16$$

$$\Rightarrow (2)^{v} = 2 \times 2 \times 2 \times 2$$

$$\Rightarrow (2)^{v} = (2)^{4}$$

$$\therefore x = 4$$
(ii) Let, $\log_{5} 125 = x \Rightarrow (5)^{v} = (5)^{v}$

$$\therefore x = 3$$
(iii) Let, $\log_{4} 8 = x \Rightarrow (4)^{v} = 8$

$$\Rightarrow (2 \times 2)^{v} = 2 \times 2 \times 2 \Rightarrow (2)^{2v} = (2)^{3}$$

$$\Rightarrow 2x = 3$$

$$\therefore x = \frac{3}{2}$$
(iv) $\log_{2} 27 = x$

$$\Rightarrow (9)^{v} = 27$$

$$\Rightarrow (3 \times 3)^{v} = 3 \times 3 \times 3 \Rightarrow (3)^{2v} = (3)^{4}$$

$$\Rightarrow 2x = 3$$

$$\therefore x = \frac{3}{2}$$
(v) $\log_{10} (.01) = x \Rightarrow (10)^{v} = .01$

$$\Rightarrow (10)^{v} = \frac{1}{100} \Rightarrow (10)^{v} = \frac{1}{10} \times \frac{1}{10}$$

$$\Rightarrow (10)^{v} = \frac{1}{(10)^{2}} \Rightarrow (10)^{v} = (10)^{-2}$$

$$\therefore x = -2$$
(v) $\log_{7} \frac{1}{7} = x \Rightarrow (7)^{v} = \frac{1}{7}$

$$\Rightarrow (7)^{v} = (7)^{-1}$$

$$\therefore x = -1$$
(vii) Let, $\log_{.5} 256 = x$

$$\Rightarrow (.5)^{v} = 256 \Rightarrow \left(\frac{5}{10}\right)^{v} = 256$$

(*vii*) $\log_{81} x = \frac{3}{2}$ $\therefore x = 81^{\frac{3}{2}} = (3^4)^{\frac{3}{2}} = 3^{4\times\frac{3}{2}} = 3^6$ $= 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729$ (*viii*) $\log_{9} x = 2.5 = \frac{5}{2}$ $\therefore x = (9)^{\frac{5}{2}} = (3^2)^{\frac{5}{2}} = 3^{2\times\frac{5}{2}} = 3^5$ $= 3 \times 3 \times 3 \times 3 \times 3 = 243$ (*ix*) $\log_4 x \approx -1.5 = \frac{-3}{2}$ $\therefore x = (4)^{\frac{-3}{2}} = (2^2)^{\frac{-3}{2}} = 2^{2 \times \left(\frac{-3}{2}\right)}$ $=2^{-3}=\frac{1}{2^3}=\frac{1}{2\times 2\times 2}=\frac{1}{8}$ (x) $\log_{\sqrt{5}} x = 2 \implies (\sqrt{5})^2 = x$ $\Rightarrow (5)^{2x\frac{1}{2}} = x \Rightarrow (5)^{1} = x \therefore x = 5$ (xi) $\log_x 0.001 = -3 \implies (x)^{-3} = \frac{1}{1000}$ $\Rightarrow (x)^{-3} = \frac{1}{(10)^3} \therefore (x)^{-3} = 10^{-3} \therefore x = 10$ (xii) $\log_{\sqrt{3}} (x+1) = 2 \implies (\sqrt{3})^2 = x+1$ \Rightarrow 3 = x + 1 \Rightarrow x + 1 = 3 $\Rightarrow x=3-1$ x = 2(*xiii*) $\log_4(2x+3) = \frac{3}{2} \implies (4)^3_2 = 2x+3$ $\Rightarrow (2 \times 2)^{\frac{3}{2}} = 2x + 3 \Rightarrow (2)^{2x^{\frac{3}{2}}} = 2x + 3$ $\Rightarrow (2)^3 = 2x + 3 \Rightarrow 2 \times 2 \times 2 = 2x + 3$ \Rightarrow 8 = 2x + 3 \Rightarrow 2x = 8 - 3 $\therefore 2x = 5$ $\therefore x = \frac{5}{2}$

(xiv) $\log_{\sqrt{2}} x = 3 \implies (\sqrt[3]{2})^3 = x \implies [(2)^{\frac{1}{3}}]^3 = x$ $\Rightarrow (2)^{\frac{1}{3}\times 3} = x \Rightarrow (2)^{\frac{1}{3}} = x \therefore x = 2$ $(xv) \log_2(x^2-1) = 3 \implies (2)^3 = x^2 - 1$ \Rightarrow 2 × 2 × 2 = $x^2 - 1 \Rightarrow$ 8 = $x^2 - 1$ \Rightarrow $x^2 - 1 = 8 \Rightarrow x^2 = 8 + 1 \Rightarrow x^2 = 9$ $\therefore x = \pm 3$ (xvi) $\log x = -1 \implies (10)^{-1} = x \implies x = 10^{-1}$ $\therefore x = \frac{1}{10}$ (xvii) $\log (2x-3) = 1 \implies (10)^1 = 2x-3$ \Rightarrow 10=2x-3 \Rightarrow 2x=10+3 \Rightarrow 2x=13 $\therefore x = \frac{13}{2} = 6\frac{1}{2}$ (xviii) $\log x = -2, 0, \frac{1}{3}$ $\log x = -2 \implies (10)^{-2} = x \implies \frac{1}{100} = x \implies x = \frac{1}{100}$ when, $\log x = 0 \implies (10)^\circ = x \implies x = 1$ when $\log x = \frac{1}{3} \implies (10)^{\frac{1}{3}} = x \implies x = \sqrt[3]{10}$ Hence, $x = \frac{1}{100}$, $1\sqrt[3]{10}$

Question 5.

Given $\log_{10}a = b$, express 10^{2b-3} in terms of a. Solution:

Given
$$\log_{10} a = b \implies (10)^b = a$$

Now $10^{2b-3} = \frac{(10)^{2b}}{(10)^3} = \frac{(10^b)^2}{10 \times 10 \times 10} = \frac{(10^b)^2}{1000}$
 $= \frac{a^2}{1000}$

Question 6.

Given $\log_{10} x = a$, $\log_{10} y = b$ and $\log_{10} z = c$, (i) write down 10^{2a-3} in terms of x. (ii) write down 10^{3b-1} in terms of y. (iii) if $\log_{10} P = 2a + \frac{b}{2}$ - 3c, express P in terms of x, y and z. Solution:

Given that
$$\log_{10} x = a \implies (10)^a = x$$
(1)
 $\log_{10} y = b \implies (10)^b = y$ (2)
 $\log_{10} z = c \implies (10)^c = z$ (3)
(i) $10^{2a-3} = \frac{(10)^{2a}}{(10)^3} = \frac{(10^a)^2}{10 \times 10 \times 10} = \frac{(x)^2}{1000} = \frac{x^2}{1000}$
(ii) $10^{3b-1} = \frac{(10)^{3b}}{(10)^1} = \frac{(10^b)^3}{10} = \frac{(y)^3}{10} = \frac{y^3}{10}$
(iii) $\log_{10} P = 2a + \frac{b}{2} - 3c$

Substituting the value of a, b and c from equation (1), (2) and (3) we get

$$Log_{10}P = 2 log_{10}x + \frac{1}{2} log_{10}y - 3 log_{10}z$$

$$\Rightarrow Log_{10}P = log_{10}(x)^{2} + log_{10}(y)^{\frac{1}{2}} - log_{10}(2)^{3}$$

$$\Rightarrow Log_{10}P = log_{10}(x^{2} \times y^{\frac{1}{2}}) - log_{10}z^{3}$$

$$\Rightarrow Log_{10}P = log_{10}\left(\frac{x^{2}\sqrt{y}}{z^{3}}\right) \Rightarrow P = \frac{x^{2}\sqrt{y}}{z^{3}}$$

Question 7.

If $log_{10}x = a$ and $log_{10}y = b$, find the value of xy. Solution:

Given that $\log_{10} x = a$ and $\log_{10} y = b$ $\Rightarrow (10)^a = x$ and $(10)^b = y$ Then $xy = (10)^a \times (10)^b = (10)^{a+b}$ **Question 8.**

Given log₁₀ a = m and log₁₀ b = n, express $\frac{a^3}{b^2}$ in terms of m and n. Solution:

Given $\log_{10} a = m$ and $\log_{10} b = n$ Then $(10)^m = a$ and $(10)^n = b$

$$\frac{a^3}{b^2} = \frac{(10^m)^3}{(10^n)^2} = \frac{(10)^{3m}}{(10)^{2n}} = (10)^{3m-2n}$$

Question 9.

Given $\log_{10}a = 2a$ and $\log_{10}y = -\frac{b}{2}$ (i) write 10^a in terms of x. (ii) write 10^{2b+1} in terms of y. (iii) if log₁₀P= 3a -2b, express P in terms of x and y. Solution:

Given that $\log_{10} x = 2a \implies (10)^{2a} = x$ and $\log_{10} y = \frac{b}{2}$, $\Rightarrow (10)^{\frac{b}{2}} = y$ (i) $10^{\prime\prime} = (10^{2\prime})^{\frac{1}{2}} = (x)^{\frac{1}{2}} = \sqrt{x}$ (*ii*) $10^{2b+1} = 10^{2b} \times 10^{1} = \frac{4}{10} \left(\frac{b}{2}\right) \times 10^{1}$ $=\left(10^{\frac{\hbar}{2}}\right)^4$ (iii) ⇒ ⇒ ⇒ 1 - 10g₁₀ $\Rightarrow \log_{10} \mathbf{P} = \log_{10} \left(\frac{(x)^{\frac{1}{2}}}{y^4} \right) \Rightarrow \mathbf{P} = \frac{(x)^{\frac{1}{2}}}{y^4}$

$$\log_{10} P = 3a - 2b$$

$$\log_{10} P = \frac{3}{2} (2a) - 4\left(\frac{b}{2}\right)$$

$$\log_{10} P = \frac{3}{2} (\log_{10} x) - 4 = (\log_{10} y)$$

$$\log_{10} P = \log_{10} (x)^{\frac{3}{2}} - \log_{10} y^{4}$$

$$\times 10 = y^4 \times 10 = 10y^4$$

Question 10.

If $\log_2 y = x$ and $\log_3 z = x$, find 72^x in terms of y and z. Solution: $\log_2 y = x$, $\log_3 z = x$ $y = 2^x$ and $z = 3^x$ (*i*) $72^x = (2 \times 2 \times 2 \times 3 \times 3)^x = (2^3 \times 3^2)^x$ $= 2^{3x} \times 3^{2x} = (2^x)^3 \times (3^x)^2 = y^3 \cdot z^2$ [From (*i*)] Hence $72^x = y^3 \cdot z^2$

Question 11.

If $\log_2 x = a$ and $\log_5 y = a$, write 100^{2a-1} in terms of x and y. Solution:

$$\log_{2} x = a \text{ and } \log_{5} y = a$$

$$\therefore x = 2^{a} \text{ and } y = 5^{a}$$

$$100^{2a-1} = (2 \times 2 \times 5 \times 5)^{2a-1}$$

$$= (2^{2} \times 5^{2})^{2a-1} = 2^{4a-2} \times 5^{4a-2}$$

$$= \frac{2^{4a}}{2^{2}} \times \frac{5^{4a}}{5^{2}} = \frac{(2^{a})^{4} \times (5^{a})^{4}}{4 \times 25} = \frac{x^{4} \times y^{4}}{100}$$

$$= \frac{x^{4}y^{4}}{100}$$

Exercise 9.2

Question 1.Simplify the following :(i) $\log a^3 - \log a^2$ (ii) $\log a^3 + \log a^2$

(iii)
$$\frac{\log 4}{\log 2}$$
 (iv) $\frac{\log 8 \log 9}{\log 27}$
(v) $\frac{\log 27}{\log \sqrt{3}}$ (vi) $\frac{\log 9 - \log 3}{\log 27}$
Solution:

(i)
$$\log a^{3} - \log a^{2} = \log \left(\frac{a^{3}}{a^{2}}\right)$$
 (Quotient Law)
= $\log a$
(ii) $\log a^{3} \div \log a^{2} = 3 \log a \div 2 \log a$ (Power Law)
 $= \frac{3 \log a}{2 \log a} = \frac{3}{2}$
(iii) $\frac{\log 4}{\log 2} = \frac{\log(2 \times 2)}{\log 2} = \frac{\log 2}{\log 2}$
 $= \frac{2 \log 2}{\log 2}$ (Power Law) = 2 (1) = 2
(iv) $\frac{\log 8 \log 9}{\log 27} = \frac{\log 2^{3} \cdot \log 3^{2}}{\log 3^{3}}$
 $= \frac{(3 \log 2) \cdot (2 \log 3)}{(3 \log 3)}$ (Power Law)
 $= \frac{(\log 2) \cdot (2)}{1} = 2 \log 2 = \log 2^{2} = \log 4.$
(v) $\frac{\log 27}{\log \sqrt{3}} = \frac{\log(3 \times 3 \times 3)}{\log(3)^{1/2}}$
 $= \frac{\log(3)^{3}}{\log(3)^{1/2}} = \frac{3 \log 3}{12 \log 3}$ (Power Law)
 $= \frac{3 \times 2}{1} \left(\frac{\log 3}{\log 3}\right) = 6 (1) = 6$
(v) $\frac{\log 9 - \log 3}{\log 27} = \frac{\log(3 \times 3) - \log 3}{\log(3 \times 3 \times 3)}$
 $= \frac{\log 3^{2} - \log 3}{\log 3^{3}} = \frac{2 \log 3 - \log 3}{3 \log 3}$ (Power Law)
 $= \frac{3 \log 3}{3 \log 3} = \frac{1}{3}$

Question 2. Evaluate the following:

(i)
$$\log \left(10 \pm \sqrt[3]{10}\right)$$
 (ii) $2 \pm \frac{1}{2} \log(10^{-3})$
(iii) $2 \log 5 \pm \log 8 - \frac{1}{2} \log 4$.
(iv) $2 \log 10^3 \pm 3 \log 10^{-2} - \frac{1}{3} \log 5^{-3} \pm \frac{1}{2} \log 4$
(v) $2 \log 2 \pm \log 5 - \frac{1}{2} \log 36 - \log \frac{1}{30}$
(vi) $2 \log 5 \pm \log 3 \pm 3 \log 2 - \frac{1}{2} \log 36 - 2 \log 10$
(vii) $\log 2 \pm 16 \log \frac{5^{10}}{15} \pm 12 \log \frac{25}{24} \pm 7 \log \frac{81}{80}$.
(viii) $2 \log_{10} 5 \pm \log_{10} 8 - \frac{1}{2} \log_{10} 4$.

Solution:

(i)
$$\log \left(10 + \sqrt[3]{10}\right) = \log \left(10 + (10)^{\frac{1}{3}}\right)$$

$$= \log \left((10)^{1} + (10)^{\frac{1}{3}}\right) = \log \left(10^{1-\frac{1}{3}}\right) = \log \left(10^{\frac{2}{3}}\right)$$

$$= \frac{2}{3} \log 10 = \frac{2}{3} (1) = \frac{2}{3}$$
(ii) $2 + \frac{1}{2} \log (10^{-3}) = 2 + \frac{1}{2} \times (-3) \log 10$

$$= 2 - \frac{3}{2} \log 10 = 2 - \frac{3}{2} (1) = 2 - \frac{3}{2} = \frac{4 - 3}{2} = \frac{1}{2}$$
(iii) $2 \log 5 + \log 8 - \frac{1}{2} \log 4$

$$= \log (5)^{2} + \log 8 - \frac{1}{2} \log (2)^{2}$$

$$= \log 25 + \log 8 - \frac{1}{2} \times 2 \log 2$$

$$= \log 25 + \log 8 - \log 2 = \log \left(\frac{25 \times 8}{2}\right)$$

$$= \log \left(\frac{25 \times 4}{1}\right) = \log (100) = \log (10)^{2}$$

$$= 2 \log 10 = 2 (1) = 2$$
(iv) $2 \log 10^{3} + 3\log 10^{-2} - \frac{1}{3}\log 5^{-3} + \frac{1}{2} \log 4$

$$= 2 \times 3 \log 10 + 3 (-2) \log 10 - \frac{1}{3} (-3) \log 5 + \frac{1}{2}$$

$$\log (2)^{2}$$

$$= 6 \log 10 - 6 \log 10 + \frac{3}{3} \log 5 + \frac{1}{2} \times 2 \log 2$$

$$= 0 + 1 \log 5 + \log 2 = \log 5 + \log 2 = \log (5 \times 2)$$

$$= \log (10) = 1$$

(v) 2 log 2 + log $5 - \frac{1}{2} \log 36 - \log \frac{1}{30}$

$$= \log (2)^2 + \log 5 - \frac{1}{2} \log (6)^2 - \log \left(\frac{1}{30}\right)$$

$$= \log 4 + \log 5 - \frac{1}{2} \times 2 \log 6 - \log \frac{1}{30}$$

$$= \log 4 + \log 5 - \log 6 - (\log 1 - \log 30)$$

$$= \log 4 + \log 5 - \log 6 - \log 1 + \log 30$$

$$= (\log 4 + \log 5 + \log 30) - (\log 6 + \log 1)$$

$$= \log (4 \times 5 \times 30) - \log (6 \times 1)$$

$$= \log \frac{4 \times 5 \times 30}{6 \times 1} = \log \frac{4 \times 5 \times 5}{1 \times 1} = \log 100$$

$$= \log (10)^2 = 2 \log 10 = 2(1) = 2$$

(vf) 2 log 5 + log 3 + 3 log 2 - $\frac{1}{2} \log 36 - 2 \log 10$

$$= \log (5)^2 + \log 3 + \log 8 - \frac{1}{2} \times 2 \log 6 - 2 \log 10$$

$$= \log (25 + \log 3 + \log 8 - \frac{1}{2} \times 2 \log 6 - 2 \log 10$$

$$= \log (25 \times 3 \times 8) - \log 6 - \log 100$$

$$= \log \left(\frac{25 \times 3 \times 8}{6 \times 100}\right) = \log \left(\frac{1 \times 3 \times 8}{6 \times 4}\right)$$

$$= \log \left(\frac{24}{24}\right) = \log 1 = 0.$$

(*vii*) $\log 2 + 16 \log \frac{16}{15} + 12 \log \frac{25}{24} + 7 \log \frac{81}{80}$ $= \log 2 + 16 (\log 16 - \log 15) + 12 (\log 25 - \log 24)$ $+7(\log 81 - \log 80)$ $= \log 2 + 16 \left[\log (2)^4 - \log (3 \times 5) \right] + 12 \left[\log (5)^2 \right]$ $-\log (3 \times 2 \times 2 \times 2) + 7 [\log (3 \times 3 \times 3 \times 3) - \log$ $(2)^4 \times 5$] $= \log 2 + 16 [4 \log 2 - (\log 3 + \log 5)] + 12 [2 \log 5]$ $-\log (3 \times 2^3) + 7 [\log (3)^4 - (\log 4 + \log 5)]$ $= \log 2 + 16 [4 \log 4 - \log 3 - \log 5] + 12 [2 \log 5 - 10 \log 5]$ $(\log 3 + \log 2^3) + 7 [4 \log 3 - \log 4 - \log 5]$ $12 \log 3 - 12 \log 2^3 + 28 \log 3 - 7 \log 2^4 - 7 \log 5$ $= \log 2 + 64 \log 2 - 16 \log 3 - 16 \log 5 + 24 \log 5 - 12$ $\log 3 - 36 \log 2 + 28 \log 3 - 28 \log 2 - 7 \log 5$ $= (\log 2 + 64 \log 2 - 36 \log 2 - 28 \log 2) + (-16 \log 2)$ $3 - 12 \log 3 + 28 \log 3 + (-16 \log 5 + 24 \log 5 - 7)$ $\log 5 + 28 \log 3 + (-16 \log 5 + 24 \log 5 - 7 \log 5)$ $= (65 \log 2 - 64 \log 2) + (-28 \log 3 + 28 \log 3) +$ $(-23 \log 5 + 24 \log 5)$ $= \log 2 + 0 + \log 5 = \log 2 + \log 5$ $= \log (2 \times 5) = \log 10 = 1$ (*viii*) $2 \log_{10} 5 + \log_{10} 8 - \frac{1}{2} \log_{10} 4$ $= \log_{10}(5)^2 + \log_{10}(8) - \log_{10}(4)^{\frac{1}{2}}$ $= \log_{10} 25 + \log_{10} 8 - \log_{10} (2)^{2 \times \frac{1}{2}}$ $= \log_{10} 25 + \log_{10} 8 - \log_{10} 2$ $= \log_{10}\left(\frac{25 \times 8}{2}\right) = \log_{10}\left(25 \times 4\right)$ $= \log_{10} 100 = \log_{10} (10)^2 = 2 \log_{10} 10 = 2 (1) = 2.$

Question 3.

Express each of the following as a single logarithm:

(i)
$$2 \log 3 - \frac{1}{2} \log 16 + \log 12$$

(ii) $2 \log_{10} 5 - \log_{10} 2 + 3 \log_{10} 4 + 1$.
(iii) $\frac{1}{2} \log 36 + 2 \log 8 - \log 1.5$
(iv) $\frac{1}{2} \log 25 - 2 \log 3 + 1$
(v) $\frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2$.
Solution:

(i)
$$2 \log 3 - \frac{1}{2} \log 16 + \log 12$$

= $2 \log 3 - \frac{1}{2} \log (4)^2 + \log 12$

$$= 2 \log 3 - \frac{1}{2} \times 2 \log 4 + \log 12$$

$$= 2 \log 3 - \log 4 + \log 12 = \log (3)^{2} - \log 4 + \log 12$$

$$= \log 9 - \log 4 + \log 12 = \log \frac{9 \times 12}{4} = \log \left(\frac{9 \times 3}{1}\right)$$

$$= \log 27.$$

(*ii*) $2 \log_{10}5 - \log_{10}2 + 3 \log_{10}4 + 1$

$$= \log_{10}(5)^{2} - \log_{10}2 + \log_{10}(4)^{3} + \log_{10}10$$

($\therefore \log_{10}10 = 1$)

$$= \log_{10}(25 - \log_{10}2 + \log_{10}64 + \log_{10}10$$

$$= \log_{10}\left(\frac{16000}{2}\right) = \log_{10}8000$$

(*iii*) $\frac{1}{2} \log 36 + 2 \log 8 - \log 1.5$

$$= \log (36)^{\frac{1}{2}} + \log(8)^{2} - \log 1.5$$

$$= \log (6)^{2\times\frac{1}{2}} + \log 64 - \log \left(\frac{15}{10}\right)$$

$$= \log 6 + \log 64 - (\log 15 - \log 10)$$

$$= \log (6 \times 64 - \log 15 + \log 10)$$

$$= \log (6 \times 64 + 10) - \log 15$$

$$= \log \left(\frac{60 \times 64}{15}\right) = \log (4 \times 64) = \log 256$$

(*iv*) $\frac{1}{2} \log 25 - 2 \log 3 + 1$

$$= \log (25)^{\frac{1}{2}} - \log (3)^{2} + \log 10$$
 ($\because \log 10^{-1}$))

$$= \log (5)^{\frac{1}{2}} - \log 9 + \log 10$$

$$= \log (5)^{\frac{1}{2}} - \log 9 + \log 10$$

$$= \log 5 - \log 9 + \log 10 = \log (5 \times 10) - \log 9$$

$$= \log \frac{5 \times 10}{9} = \log \frac{50}{9}$$

(v)
$$\frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2$$
.
 $\frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2$
 $= \log 9^{\frac{1}{2}} + \log 3^2 - \log 6 + \log 2 - \log 100$
 $= \log 3 + \log 9 - \log 6 + \log 2 - \log 100$
 $= \log \frac{3 \times 9 \times 2}{6 \times 100}$
 $= \log \frac{9}{100}$

Question 4. Prove the following : (i) $\log_{10} 4 \div \log_{10} 2 = \log_3 9$ (ii) log₁₀ 25 + log₁₀ 4 = log₅ 25 Solution: (i) L.H. $S = \log_{10} 4 \div \log_{10} 2$ = $\log_{10} (2)^2 \div \log_{10} 2 = 2 \log_{10} 2 \div \log_{10}' 2$ $=\frac{2\log_{10}2}{\log_{10}2}=2(1)=2$ R.H.S. = $\log_3 9 = \log_3 (3)^2 = 2 \log_3 3 = 2 (1) = 2$ Hence, Proved. L.H.S. = R.H.S. (*ii*) L.H.S. = $\log_{10} 25 + \log_{10} 4 = \log_{10} 25 \times 4$ = $\log_{10} 100 = \log_{10} 10^2$ $= 2 \log_{10} 10 = 2 \times 1$ = 2 $(\because \log_a a = 1)$ R.H.S. = $\log_5 25 = \log_5 (5)^2$ $= 2 \log_5 5 = 2 \times 1 = 2$ 2 $(\because \log_a a = 1)$ Hence L.H.S. = R.H.S.

Question 5. If x = 100)^a , y = (10000)^b and z = (10)^c, express $\log \frac{10\sqrt{y}}{x^2z^3}$ in terms of *a*, *b*, *c*.

Solution:

Given that $x = (100)^a = [(10)^2]^a = (10)^{2a}$ $y = (10000)^{b} = [(10)^{4}]^{b} = (10)^{4b}$ $z = (10)^c = (10)^c$ Now, $\log \frac{10\sqrt{y}}{r^2 \tau^3}$ = $(\log 10 + \log \sqrt{y}) - (\log x^2 + \log z^3)$ $= \left(1 + \log(y)^{\frac{1}{2}}\right) - (\log(x)^2 + \log(z)^3) \quad [\cdots \log 10 = 1]$

$$= \left(1 + \frac{1}{2}\log y\right) - (2\log x + 3\log z)$$

Substituting the value of x, y and z, we get

$$= \left(1 + \frac{1}{2}\log(10)^{4b}\right) - (2\log(10)^{2a} + 3\log(10)^{c})$$

$$= \left(1 + \frac{1}{2} \times 4b\log(10)\right) - (2 \times 2a\log(10) + 3 \times c\log(10))$$

$$= \left(1 + \frac{1}{2} \times 4b \times 1\right) - (2 \times 2a \times 1 + 3 \times c \times 1)$$

[\dots \log 10 = 1]
$$= (1 + 2b) - (4a + 3c) = 1 + 2b - 4a - 3c$$

$$= 1 - 4a + 2b - 3c$$

Question 6. If $a = \log_{10} x$, find the following in terms of a : (i) x (ii) $\log_{10} \sqrt[5]{x^2}$ (iii) log₁₀5x

Solution:

(i) Given that,

$$a = \log_{10} x \implies (10)^a = x \implies x = (10)^a$$

(ii) $\log_{10} \sqrt[5]{x^2} = \log_{10} (x^2)^{\frac{1}{5}} = \log_{10} (x)^{\frac{2}{5}}$
 $= \frac{2}{5} \log_{10} x = \frac{2}{5} (a) = \frac{2}{5} a.$
(iii) $x = (10)^a = \log_{10} 5x = \log_{10} 5 (10)^a$
 $= \log_{10} 5 + \log_{10} 10 = \log_{10} 5 + a (1)$
 $= a + \log_{10} 5$

Question 7.
If
$$a = \log \frac{2}{3}$$
, $b = \log \frac{3}{5}$ and $c = 2 \log \sqrt{\frac{5}{2}}$,
find the value of
(i) $a + b + c$ (ii) 5^{a+b+c} .
Solution:
Given that
 $a = \log \frac{2}{3}$, $b = \log \frac{3}{5}$, $c = 2 \log \sqrt{\frac{5}{2}}$
(i) $a + b + c = \log \frac{2}{3} + \log \frac{3}{5} + 2 \log \sqrt{\frac{5}{2}}$
 $= (\log 2 - \log 3) + (\log 3 - \log 5) + 2 \log \left(\frac{5}{2}\right)^{\frac{1}{2}}$
 $= \log 2 - \log 3 + \log 3 - \log 5 + 2 \times \frac{1}{2} \log \left(\frac{5}{2}\right)^{\frac{1}{2}}$
 $= \log 2 - \log 3 + \log 3 - \log 5 + \log \frac{5}{2}$
 $= \log 2 + (-\log 3 + \log 3) - \log 5 + \log \frac{5}{2}$
 $= \log 2 + (-\log 3 + \log 3) - \log 5 + \log 5 - \log 2$
 $= (\log 2 - \log 2) + 0 + (\log 5 - \log 5)$
 $= 0 + 0 + 0 = 0$
(ii) $5^{a+b+c} = 5^{\circ} = 1$

-

Question 8.

If $x = \log \frac{3}{5}$, $y = \log \frac{5}{4}$ and $z = 2 \log \frac{\sqrt{3}}{2}$, find the values of (i) x + y - z, (ii) 3^{x+y-z} Solution:

$$x = \log \frac{3}{5}, y = \log \frac{5}{4}, z = 2 \log \frac{\sqrt{3}}{2}$$

$$\therefore x = \log 3 - \log 5, y = \log 5 - \log 4$$

$$z = \log \left(\frac{\sqrt{3}}{2}\right)^2 = \log \frac{3}{4} = \log 3 - \log 4$$

(i) Now, $x + y - z = \log 3 - \log 5 + \log 5 - \log 4$

$$-\log 3 + \log 4$$

$$= 0$$

(ii) $3^{x + y - 3} = 3^0 = 1$

Question 9. If $x = \log_{10} 12$, $y = \log_4 2 x \log_{10} 9$ and $z = \log_{10} 0.4$, find the values of (i)x-y-z (ii) 7^{x-y-z} Solution:

$$x = \log_{10} 12, y = \log_4 2 \times \log_{10} 9,$$

$$z = \log_{10} 0.4$$

(i) $x - y - \dot{z} = \log_{10} 12 - \log_4^2 2 \times \log_{10} 9$

$$- \log_{10} 0.4$$

$$= \log_{10} (3 \times 4) - \log_4 4^{\frac{1}{2}} \times \log_{10} 3^2 - \log_{10} \frac{4}{10}$$

$$= \log_{10} 3 + \log_{10} 4 - \frac{1}{2} \log_4 4 \times 2 \log_{10} 3$$

$$- (\log_{10} 4 - \log_{10} 10)$$

$$= \log_{10} 3 + \log_{10} 4 - \frac{1}{2} \times 1 \times 2 \log_{10} 3$$

$$- \log_{10} 4 + 1$$

$$= \log_{10} 3 + \log_{10} 4 - \log_{10} 3 - \log_{10} 4 + 1$$

$$= 1$$

(ii) $7^{x - y - z} = 7^1 = 7$

Question 10.

If $\log V + \log 3 = \log \pi + \log 4 + 3 \log r$, find V in terms of other quantities. Solution: $\Rightarrow \log V + \log 3 = \log \pi + \log 4 + \log (r)^3$

$$\Rightarrow \log V + \log 3 = \log \pi + \log 4 + \log (r)^{3}$$

$$\Rightarrow \log (V \times 3) = \log (\pi \times 4 \times r^{3})$$

$$\Rightarrow \log (3V) = \log 4 \pi r^{3} \Rightarrow 3V = 4 \pi r^{3}$$

$$\Rightarrow V = \frac{4}{3} \pi r^{3}$$

Question 11. Given 3 (log 5 – log3) – (log 5-2 log 6) = 2 – log n , find n. Solution: Given that $3(\log 5 - \log 3) - (\log 5 - 2\log 6)$ $= 2 - \log n$, $3 \log 5 - 3 \log 3 - \log 5 + 2 \log 6 = 2 - \log n$ ⇒ $2\log 5 - 3\log 3 + 2\log 6 = 2 - \log n$ ⇒ $\Rightarrow \log(5)^2 - \log(3)^3 + \log(6)^2 = 2(1) - \log n$ $\log 25 - \log 27 + \log 36 = 2 \log 10 - \log n$ ⇒ $[:: \log 10 = 1]$ $\log n = 2 \log 10 - \log 25 + \log 27 - \log 36$ ⇒ $\log n = \log (10)^2 - \log 25 + \log 27 - \log 36$ ⇒ $\log n = \log 100 - \log 25 + \log 27 - \log 36$ ⇒ $\log n = (\log 100 + \log 27) - (\log 25 + \log 36)$ ⇒ $\log n = \log (100 \times 27) - \log (25 \times 36)$ ⇒ $\Rightarrow \log n = \log \left(\frac{100 \times 27}{25 \times 36} \right)$ $\Rightarrow \log n = \log \left(\frac{4 \times 27}{1 \times 36}\right)$ $\Rightarrow \log n = \log \left(\frac{1 \times 27}{1 \times 9}\right) \Rightarrow \log n = \log 3$ $\implies n=3.$

Question 12.

Given that $\log_{10}y + 2 \log_{10}x = 2$, express y in terms of x. Solution: $\log_{10}y + 2 \log_{10}x = 2$

$$\Rightarrow \log_{10} y + \log_{10} x^2 = 2 \Rightarrow \log_{10} (yx^2) = 2$$

$$\Rightarrow \log_{10} (yx^2) = 2 \log_{10} 10$$

$$\Rightarrow \log_{10} (yx^2) = \log_{10} (10)^2 \Rightarrow yx^2 = (10)^2$$

$$\Rightarrow yx^2 = 100 \Rightarrow y = \frac{100}{x^2}$$

Question 13. Express log₁₀2+1 in the from log₁₀x.

Solution:

$$log_{10} 2 + 1 = log_{10} 2 + log_{10} 10 \ (\because \ log_{10} 10 = 1)$$
$$= \ log_{10} 2 \times 10 = \ log_{10} 20$$

Question 14.

If
$$a^2 = \log_{10} x$$
, $b^3 = \log_{10} y$ and $\frac{a^2}{2} - \frac{b^2}{3} = \log_{10} z$

express z in terms of x and y. Solution:

Given that $a^{2} = \log_{10}x, \ b^{3} = \log_{10}y$ we have, $\frac{a^{2}}{2} - \frac{b^{2}}{3} = \log_{10}z$ $\Rightarrow \quad \frac{1}{2}(\log_{10}x) - \frac{1}{3}(\log_{10}y) = \log_{10}z$ $\Rightarrow \quad \log_{10}(x)^{\frac{1}{2}} - \log_{10}(y)^{\frac{1}{3}} = \log_{10}z$ $\Rightarrow \quad \log_{10}\sqrt{x} - \log_{10}\sqrt{y} = \log_{10}z$ $\Rightarrow \quad \log_{10}\frac{\sqrt{x}}{\sqrt[3]{y}} = \log_{10}z \Rightarrow \quad \frac{\sqrt{x}}{\sqrt[3]{y}} = z$ Hence, $z = \frac{\sqrt{x}}{\sqrt[3]{y}}$

Question 15.

Given that log m = x + y and log n = x-y, express the value of log m^2n in terms of x and y.

Solution:

Given that $\log m = x + y$ and $\log n = x - y$ $\log m^2 n = \log m^2 + \log n = 2 \log m + \log n$ = 2 (x + y) + x - y = 2x + 2y + x - y = 3x + y

Question 16.

Given that $\log x = m+n$ and $\log y = m-n$, express the value of $\log \left(\frac{10x}{y^2}\right)$ in terms of m and n.

Solution:

Given that $\log n = m + n$ and $\log y = m - n$

Then
$$\log\left(\frac{10x}{y^2}\right) = \log 10x - \log y^2$$

= $\log 10 + \log x - 2 \log y = 1 + \log x - 2 \log y$
= $1 + (m+n) - 2 (m-n) = 1 + m + n - 2 m + 2n$
= $1 - m + 3n$

Question 17.

If
$$\frac{\log x}{2} = \frac{\log y}{3}$$
, find the value of $\frac{y^4}{x^6}$.

Solution:

$$\frac{\log x}{2} = \frac{\log y}{3} \implies 3 \log x = 2 \log y$$
$$\implies \log x^3 = \log y^2 \implies x^3 = y^2$$
Squaring both sides, we get

$$x^6 = y^4 \implies y^4 = x^6 \implies \frac{y^4}{x^6} = 1$$

Hence, value of $\frac{y^4}{x^6} = 1$

Question 18.

Solve for x:

(i) $\log x + \log 5 = 2 \log 3$ (ii) $\log_3 x - \log_3 2 = 1$

(*iii*)
$$x = \frac{\log 125}{\log 25}$$
 (*iv*) $\frac{\log 8}{\log 2} \times \frac{\log 3}{\log \sqrt{3}} = 2 \log x$

Solution:

(i)
$$\log x + \log 5 = 2 \log 3$$

 $\Rightarrow \log x = 2 \log 3 - \log 5 \Rightarrow \log x = \log (3)^2 - \log 5$
 $\Rightarrow \log x = \log 9 - \log 5 \Rightarrow \log x = \log \left(\frac{9}{5}\right)$
(ii) $\log_3 x - \log_3 2 = 1 \Rightarrow \log_3 x = \log_3 2 + 1$
 $\Rightarrow \log_3 x = \log_3 2 + \log_3 3 \quad (\because \log_3 3 = 1)$
 $\Rightarrow \log_3 x = \log_3 (2 \times 3) \Rightarrow \log_3 x = \log_3 6$
 $\therefore x = 6$
(iii) $x = \frac{\log 125}{\log 25} \Rightarrow x = \frac{\log(5)^3}{\log(5)^2}$
 $\Rightarrow x = \frac{3\log 5}{2\log 5} = \frac{3}{2} \quad \therefore x = \frac{3}{2}$
(iv) $\frac{\log 8}{\log 2} \times \frac{\log 3}{\log \sqrt{3}} = 2 \log x$
 $\Rightarrow \frac{\log(2)^3}{\log 2} \times \frac{\log 3}{\log(3)} = 2 \log x$
 $\Rightarrow \frac{3\log 2}{\log 2} \times \frac{\log 3}{\frac{1}{2}} = 2\log x$
 $\Rightarrow 3(1) \times \frac{1}{\left(\frac{1}{2}\right)} = 2\log x \Rightarrow 3 \times \frac{2}{1} = 2\log x$
 $\Rightarrow 2\log x = 6 \Rightarrow \log x = \frac{6}{2} \Rightarrow \log x = 3$
 $\Rightarrow x = (10)^3 \Rightarrow x = 1000$

Question 19. Given 2 log₁₀x+1= log₁₀250, find (i) x

(ii)
$$\log_{10} 2x$$

Solution:
(i) $2 \log_{10} x + 1 = \log_{10} 250$
 $\Rightarrow \log_{10} x^2 + 1 = \log_{10} 250$ [$\log_a m^n = n \log m$]
 $\Rightarrow \log_{10} x^2 \times 10 = \log_{10} 250$ [$\log_{10} 10 = 1$]
 $\Rightarrow \log_{10} x^2 \times \log_{10} 10 = \log_{10} 250$
 $\Rightarrow x^2 \times 10 = 250 \Rightarrow x^2 = \frac{250}{10} \Rightarrow x^2 = 25$
 $\Rightarrow (x)^2 = (5)^2 \therefore x = 5$
(ii) $x = 5$ (proved in (i) above)
 $\log_{10} 2x = \log_{10} 2 \times 5$ [Putting $x = 5$]
 $= \log_{10} 10 = 1$ [$\log_{10} 10 = 1$]

Question 20.

If
$$\frac{\log x}{\log 5} = \frac{\log y^2}{\log 2} = \frac{\log 9}{\log \frac{1}{3}}$$
, find x and y.

Solution:

$$\frac{\log x}{\log 5} = \frac{\log y^2}{\log 2} = \frac{\log 9}{\log \frac{1}{3}}$$

Taking first and third terms,

$$\frac{\log x}{\log 5} = \frac{\log 9}{\log \frac{1}{3}} \implies \log x = \frac{\log 9}{\log \frac{1}{3}} \times \log 5$$
$$\Rightarrow \log x = \frac{\log(3 \times 3)}{\log 1 - \log 3} \times \log 5$$

.

$$\Rightarrow \log x = \frac{\log(3)^2}{0 - \log 3} \times \log 5 \qquad [\log 1 = 0]$$

$$\Rightarrow \log x = \frac{2\log 3}{-\log 3} \times \log 5$$

$$\Rightarrow \log x = \frac{2\log 3}{\log 3} \times \log 5$$

$$\Rightarrow \log x = -2 (1) \times \log 5 \Rightarrow \log x = -2\log 5$$

$$\Rightarrow \log x = \log (5)^{-2} \Rightarrow x = (5)^{-2}$$

$$\Rightarrow x = \frac{1}{(5)^2} \Rightarrow x = \frac{1}{25}$$

taking second and third terms,

$$\frac{\log y^2}{\log 2} = \frac{\log 9}{\log \left(\frac{1}{3}\right)} \implies \log y^2 = \frac{\log 9}{\log \left(\frac{1}{3}\right)} \times \log 2$$

$$\implies \log y^2 = \frac{\log(3)^2}{\log 1 - \log 3} \times \log 2$$

$$\implies \log y^2 = \frac{2\log 3}{0 - \log 3} \times \log 2 \text{ [log1 = 0]}$$

$$\implies \log y^2 = \frac{2\log 3}{-\log 3} \times \log 2$$

$$\implies \log y^2 = \frac{-2\log 3}{\log 3} \times \log 2$$

$$\implies \log y^2 = -2 \times \log 2 \implies \log y^2 = \log(2)^{-2}$$

$$\implies y^2 = (2)^{-2} \implies y = (2)^{-2 \times \frac{1}{2}} \implies y = (2)^{-1}$$

$$\implies y = \frac{1}{2}$$

Question 21. Prove the following : (i) $3_{log 4} = 4_{log 3}$ (ii) $27_{log 2} = 8_{log 3}$ Solution: (i) $3^{\log 4} = 4^{\log 3}$ is true if $\log 3^{\log 4} = \log 4^{\log 3}$ (Taking log both sides) if $\log 4 \cdot \log 3 = \log 3 \cdot \log 4$ if $\log_2 2 \cdot \log 3 = \log 3 \cdot \log 2^2$ if $2 \log 2 \times \log 3 = \log 3 \times 2 \log 2$ if $2 \log 2 \log 3 = 2 \log 2 \log 3$ which is true Hence proved

(ii) $27^{\log 2} = 8^{\log 3}$ is true if $\log 27^{\log 2} = \log 8^{\log 3}$ (Taking log both sides) if $\log 2 \log 27 = \log 3 \log 8$ if $\log 2 \log 3^3 = \log 3 \log 2^3$ if $\log 2 \cdot 3 \log 3 = \log 3 \cdot 3 \log 2$ if $3 \log 2 \cdot \log 3 = 3 \cdot \log 2 \log 3$ which is true Hence proved

Question 22.

Solve the following equations : (i) $\log (2x + 3) = \log 7$ (ii) $\log (x + 1) + \log (x - 1) = \log 24$ (iii) $\log (10x + 5) - \log (x - 4) = 2$ (iv) $\log_{10}5 + \log_{10}(5x+1) = \log_{10}(x + 5) + 1$ (v) $\log (4y - 3) = \log (2y + 1) - \log 3$ (vi) $\log_{10}(x + 2) + \log_{10}(x - 2) = \log_{10}3 + 3\log_{10}4$. (vii) $\log(3x + 2) + \log(3x - 2) = 5 \log 2$. Solution:

(i)
$$\log (2x+3) = \log 7$$

 $\Rightarrow 2x+3=7 \Rightarrow 2x=7-3 \Rightarrow 2x=4$
 $\Rightarrow x = \frac{4}{2} \therefore x=2$
(ii) $\log (x+1) + \log (x-1) = \log 24$
 $\Rightarrow \log (x+1) (x-1) = \log 24$
 $\Rightarrow \log (x+1) (x-1) = \log 24 \Rightarrow x^2-1=24$
 $\Rightarrow x^2=24+1 \Rightarrow x^2=25 \Rightarrow x^2=(5)^2$
 $\therefore x^2=5$
(iii) $\log (10x+5) - \log (x-4)=2$
 $\Rightarrow \log \frac{(10x+5)}{(x-4)} = 2 (\log 10) \quad [\therefore \log 10=1]$
 $\Rightarrow \log \frac{10x+5}{x-4} = \log (10)^2$
 $\Rightarrow \log \left(\frac{10x+5}{x-4}\right) = \log 100 \Rightarrow \frac{10x+5}{(x-4)} = 100$
 $\Rightarrow 10x+5 = 100 (x-4)$
 $\Rightarrow 10x+5 = 100 (x-4)$
 $\Rightarrow 10x+5 = 100 (x-4)$
 $\Rightarrow -30x = -405 \Rightarrow x = \frac{-405}{-90}$
 $\Rightarrow x = \frac{405}{90} = \frac{81}{18} = \frac{9}{2} \therefore x=4.5$

(iv)
$$\log_{10} 5 + \log_{10} (5x + 1) = \log_{10} (x + 5) + 1$$

 $\Rightarrow \log_{10} 5 \times (5x + 1) = \log_{10} [10 \times (x + 5)]$
 $\Rightarrow 5 (5x + 1) = 10 (x + 5) \Rightarrow 25x + 5 = 10x + 5$
 $\Rightarrow 25x - 10x = 50 - 5 \Rightarrow 15x = 45$
 $\Rightarrow x = \frac{45}{15} \therefore x = 3$.
(v) $\log (4y - 3) = \log (2y + 1) - \log 3$
 $\Rightarrow \log 4y - 3 = \log \frac{(2y + 1)}{3}$
 $\Rightarrow 4y - 3 = \frac{2y + 1}{3} \Rightarrow 3(4y - 3) = 2y + 1$
 $\Rightarrow 12y - 9 = 2y + 1 \Rightarrow 12y - 2y = 1 + 9$
 $\Rightarrow 10y = 10 \Rightarrow y = \frac{10}{10} = 1$
 $\therefore y = 1$
(v) $\log_{10}(x + 2) + \log_{10}(x - 2) = \log_{10}3 + 3\log_{10}4$
 $\Rightarrow \log_{10}(x^2 - 2^2) = \log_{10}3 + \log_{10}(4)^3$
 $\Rightarrow \log_{10}(x^2 - 4) = \log_{10}3 + \log_{10}(4 \times 4 \times 4)$
 $\Rightarrow \log_{10}(x^2 - 4) = \log_{10}3 + \log_{10}(4 \times 4 \times 4)$
 $\Rightarrow \log_{10}(x^2 - 4) = \log_{10}3 + \log_{10}64$
 $\Rightarrow x^2 - 4 = 3 \times 64 \Rightarrow x^2 - 4 = 192$
 $\Rightarrow x^2 = 192 + 4 \Rightarrow x^2 = 196$
 $\Rightarrow x^2 = (14)^2$
 $\therefore x = 14$
Hence proved
(vii) $\log(3x + 2) + \log(3x - 2) = 5\log 2$
 $\Rightarrow \log(9x^2 - 4) = \log 32$
Comparing both sides
 $9x^2 - 4 = 32 \Rightarrow 9x^2 = 32 + 4 = 36$
 $x^2 = \frac{36}{9} = 4 = (\pm 2)^2$
 $\therefore x = \pm 2$

Question 23. Solve for x : $\log_3 (x + 1) - 1 = 3 + \log_3 (x - 1)$ Solution: $\log_3 (x+1) - 1 = 3 + \log_3 (x-1)$ $\Rightarrow \log_3 (x+1) - 3 \log (x-1) = 3 + 1$ $\Rightarrow \log_3 \frac{x+1}{x-1} = 4 = \sqrt{4} \times 1 = 4 \log_3 3$ $(\because \log_a a = 1)$ $\Rightarrow \log_3 \frac{x+1}{x-1} = \log_3 3^4 = \log_3 81$ $\frac{x+1}{x-1} = \frac{81}{1}$ *.*.. 81x - 81 = x + 1 \Rightarrow $81x - x = 1 + 81 \implies 80x = 82$ ⇒ $\therefore x = \frac{82}{80} = \frac{41}{40} = 1\frac{1}{40}$

Question 24.

Solve for $x: 5^{\log x} + 3^{\log x} = 3^{\log x+1} - 5^{\log x-1}$.

Solution:

$$5^{\log x} + 3^{\log x} = 3^{\log x + 1} - 5^{\log x - 1}$$

$$5^{\log x} + 3^{\log x} = 3 \cdot 3^{\log x} \cdot 3^{1} - 5^{\log x} \cdot 5^{-1}$$

$$5^{\log x} + 3^{\log x} = 3 \cdot 3^{\log x} - \frac{1}{5} \cdot 5^{\log x}$$

$$5^{\log x} + \frac{1}{5} \cdot 5^{\log x} = 3 \cdot 3^{\log x} - 3^{\log x}$$

$$\Rightarrow \left(1 + \frac{1}{5}\right) (5^{\log x}) = (3 - 1) (3^{\log x})$$

$$\Rightarrow \frac{6}{5} (5^{\log x}) = 2 \times 3^{\log x}$$

$$\Rightarrow \frac{5^{\log x}}{3^{\log x}} = \frac{2 \times 5}{6} = \left(\frac{5}{3}\right)^{1} \Rightarrow \left(\frac{5}{3}\right)^{\log x} = \left(\frac{5}{3}\right)^{1}$$
Comparing, we get

$$\log x = 1 = \log 10$$

$$\therefore x = 10$$

Question 25.

If
$$\log \left(\frac{x-y}{2}\right) = \frac{1}{2}$$
 (log $x + \log y$), prove that
 $x^2 + y^2 = 6xy$.

Solution:

$$\log\left(\frac{x-y}{2}\right) \doteq \frac{1}{2} \quad (\log x + \log y)$$

$$\Rightarrow \quad \log\left(\frac{x-y}{2}\right) = \frac{1}{2} \quad \log xy$$

$$[\because \quad \log m + \log n = \log mn]$$

$$\Rightarrow \quad \log\left(\frac{x-y}{2}\right) = \log(xy)^{\frac{1}{2}} \quad \Rightarrow \quad \frac{x-y}{2} = (xy)^{\frac{1}{2}}$$

Squaring both sides, we get

$$\Rightarrow \left(\frac{x-y}{2}\right)^2 = \left[(xy)^{\frac{1}{2}}\right]^2 \Rightarrow \frac{(x-y)^2}{4} = (xy)^{\frac{1}{2}\times 2}$$
$$\Rightarrow (x-y)^2 = 4 \times xy \Rightarrow x^2 + y^2 - 2xy = 4xy$$
$$[\because (A-B)^2 = A^2 + B^2 - 2AB]$$
$$\Rightarrow x^2 + y^2 = 4xy + 2xy$$
$$\Rightarrow x^2 + y^2 = 6xy \qquad \text{Proved.}$$

Question 26. If $x^2 + y^2 = 23xy$, Prove that x + y = 1

$$\log \frac{x+y}{5} = \frac{1}{2} (\log x + \log y)$$

Solution:

Given
$$x^2 + y^2 = 23xy \implies x^2 + y^2 = 25xy - 2xy$$

$$\Rightarrow x^2 + y^2 + 2xy = 25xy$$

$$\Rightarrow (x)^2 + (y)^2 + 2 \times x \times y = 25xy$$

$$\Rightarrow (x + y)^2 = 25xy \implies \frac{(x + y)^2}{25} = xy$$

taking log on both sides, we get

$$\Rightarrow \log \frac{(x+y)^2}{25} = \log xy$$

$$\Rightarrow \log \left(\frac{x+y}{5}\right)^2 = \log x + \log y$$

$$\Rightarrow 2 \log \frac{x+y}{5} = \log x + \log y \Rightarrow \log \frac{x+y}{5}$$

$$= \frac{1}{2} \quad (\log x + \log y) \text{ Proved.}$$

Question 27. If $p = \log_{10}20$ and $q = \log_{10}25$, find the value of x if $2 \log_{10} (x + 1) = 2p - q$. Solution:

Given that
$$p = \log_{10} 20$$
 and $q = \log_{10} 25$
Then, $2 \log_{10} (x + 1) = 2p - q$
Substituting the value of p and q , we get
 $\Rightarrow 2 \log_{10} (x + 1) = 2 \log_{10} 20 - \log_{10} 25$
 $\Rightarrow 2 \log_{10} (x + 1) = 2 \log_{10} 20 - \log_{10} (5)^2$
 $\Rightarrow 2 \log_{10} (x + 1) = 2 \log_{10} 20 - 2\log_{10} 5$
 $\Rightarrow 2 \log_{10} (x + 1) = 2 (\log_{10} 20 - \log_{10} 5)$
 $\Rightarrow \log_{10} (x + 1) = 2 \frac{(\log_{10} 20 - \log_{10} 5)}{2}$
 $\Rightarrow \log_{10} (x + 1) = \log_{10} 20 - \log_{10} 5$
 $\Rightarrow \log_{10} (x + 1) = \log_{10} \left(\frac{20}{5}\right)$
 $\Rightarrow \log_{10} (x + 1) = \log_{10} 4 \Rightarrow x + 1 = 4$
 $\Rightarrow x = 4 - 1 \therefore x = 3$

Question 28.

Show that:

(i)
$$\frac{1}{\log_2 42} + \frac{1}{\log_3 42} + \frac{1}{\log_7 42} = 1$$

(ii) $\frac{1}{\log_8 36} + \frac{1}{\log_9 36} + \frac{1}{\log_{18} 36} = 2$
Solution:

.

(i)
$$\frac{1}{\log_2 42} + \frac{1}{\log_3 42} + \frac{1}{\log_7 42} = 1$$

L.H.S. $= \frac{1}{\log_2 42} + \frac{1}{\log_3 42} + \frac{1}{\log_7 42}$
 $\left\{ \because \log_n m = \frac{\log_m}{\log_n} \right\}$
 $= \frac{1}{\log 42} + \frac{1}{\log 42} + \frac{1}{\log 42}$

$$\frac{\log 42}{\log_2} = \frac{\log 42}{\log_3} = \frac{\log 42}{\log_7}$$
$$= \frac{\log_2}{\log 42} + \frac{\log_3}{\log 42} + \frac{\log_7}{\log 42}$$
$$= \frac{\log_2 + \log_3 + \log_7}{\log 42} = \frac{\log_{(2\times 3\times 7)}}{\log 42}$$
$$\left\{ \because \log_m + \log_n + \log_p \\ = \log_{mnp} \right\}$$

$$= \frac{\log 42}{\log 42} = 1 = \text{R.H.S.}$$

(*ii*) $\frac{1}{\log_8 36} + \frac{1}{\log_9 36} + \frac{1}{\log_{18} 36} = 2$
L.H.S. $= \frac{1}{\log_8 36} + \frac{1}{\log_9 36} + \frac{1}{\log_{18} 36}$
 $= \frac{1}{\frac{\log 36}{\log_8}} + \frac{1}{\frac{\log 36}{\log_9}} + \frac{1}{\frac{\log 36}{\log_{18}}}$
 $= \frac{\log_8}{\log_3 6} + \frac{\log_9}{\log_3 6} + \frac{\log_{18}}{\log_3 6}$
 $= \frac{\log_8 + \log_9 + \log_{18}}{\log_3 6}$
 $= \frac{\log(8 \times 9 \times 18)}{\log_3 6} = \frac{\log(36)^2}{\log_3 6}$
 $= \frac{2\log_3 6}{\log_3 6} = 2 = \text{R.H.S.}$

Question 29. Prove the following identities: 1 1

(i)
$$\frac{1}{\log_a abc} + \frac{1}{\log_b abc} + \frac{1}{\log_c abc} = 1$$

(ii) $\log_b a \cdot \log_c b \cdot \log_a c = \log_a a$
Solution:

$$(i) \frac{1}{\log_a abc} + \frac{1}{\log_b abc} + \frac{1}{\log_c abc} = 1$$

$$L.H.S. = \frac{1}{\log_a abc} + \frac{1}{\log_b abc} + \frac{1}{\log_c abc}$$

$$= \frac{1}{\log_a abc} + \frac{1}{\log_a abc} + \frac{1}{\log_a abc} + \frac{1}{\log_a abc}$$

$$\left\{ \because \log_n m = \frac{\log_m}{\log_n} \right\}$$

$$= \frac{\log_a}{\log_a bc} + \frac{\log_b}{\log_a bc} + \frac{\log_c}{\log_a bc}$$

$$= \frac{\log_a + \log_b + \log_c}{\log_a bc}$$

$$= \frac{\log_a + \log_b + \log_c}{\log_a bc}$$

$$= \frac{\log_a dbc}{\log_a bc} = 1 = R.H.S.$$

$$\left\{ \because \log_m np \\ = \log_m + \log_n + \log_n \right\}$$

$$(ii) \log_b a \cdot \log_c b \cdot \log_d c = \log_d a$$

$$L.H.S. = \log_b a \times \log_c b \times \log_d c$$

$$= \frac{\log_a abc}{\log_b b} \times \frac{\log_c b}{\log_c c} \times \frac{\log_d a}{\log_d c}$$

$$= \log_d a = R.H.S.$$

 $= \log_{a} a = \text{R.H.S.}$

Question 30. . Given that $\log_a x = \frac{1}{\alpha}$, $\log_b x = \frac{1}{\beta}$, $\log_c x$ $=\frac{1}{\gamma}$, find $\log_{abc} x$. Solution: $\log_a x = \frac{1}{\alpha}, \log_b x = \frac{1}{\beta}, \log_c x = \frac{1}{\gamma}$ $\log_a x = \frac{1}{\alpha} \Rightarrow \frac{\log x}{\log_a} = \frac{1}{\alpha} \Rightarrow \log_a = \alpha \log x$ $\log_b x = \frac{1}{\beta} \implies \frac{\log x}{\log_b} = \frac{1}{\beta} \implies \log_b = \beta \log x$ $\log_c x = \frac{1}{\gamma} \Rightarrow \frac{\log x}{\log_c} = \frac{1}{\gamma} \Rightarrow \log_c = \gamma \log x$ Now $\log_{abc} x = \frac{\log x}{\log abc}$ $=\frac{\log x}{\log a + \log b + \log c}$ $= \frac{\log x}{\alpha \log x + \beta \log x + \gamma \log x}$ $= \frac{\log x}{\log x (\alpha + \beta + \gamma)} = \frac{1}{\alpha + \beta + \gamma}$ **Question 31.** Solve for x : (i) $\log_3 x + \log_9 x + \log_{81} x = \frac{7}{4}$

(*ii*) $\log_2 x + \log_8 x + \log_{32} x = \frac{23}{15}$ Solution:

(i)
$$\log_3 x + \log_9 x + \log_{81} x = \frac{7}{4}$$

$$\Rightarrow \frac{1}{\log_x 3} + \frac{1}{\log_x 9} + \frac{1}{\log_x 81} = \frac{7}{4}$$

$$\Rightarrow \frac{1}{\log_x 3^1} + \frac{1}{\log_x 3^2} + \frac{1}{\log_x 3^4} = \frac{7}{4}$$

$$\Rightarrow \frac{1}{\log_x 3} + \frac{1}{2\log_x 3} + \frac{1}{4\log_x 3} = \frac{7}{4}$$

$$\Rightarrow \frac{1}{\log_x 3} \left[1 + \frac{1}{2} + \frac{1}{4} \right] = \frac{7}{4}$$

$$\Rightarrow \log_x 3 \times \frac{7}{4} = \frac{7}{4}$$

$$\Rightarrow \log_x 3 = \frac{7}{4} \times \frac{4}{7} = 1 = \log_3 3$$

$$\{\because \log_a a = 1\}$$
Comparing, we get

$$\therefore x = 3$$
(ii) $\log_2 x + \log_8 x + \log_{32} x = \frac{23}{15}$

$$\Rightarrow \frac{1}{\log_x 2} + \frac{1}{\log_x 8} + \frac{1}{\log_x 32} = \frac{23}{15}$$

$$\Rightarrow \frac{1}{\log_{x} 2^{1}} + \frac{1}{\log_{x} 2^{3}} + \frac{1}{\log_{x} 2^{5}} = \frac{23}{15}$$

$$\Rightarrow \frac{1}{\log_{x} 2} + \frac{1}{3\log_{x} 2} + \frac{1}{5\log_{x} 2} = \frac{23}{15}$$

$$\Rightarrow \frac{1}{\log_{x} 2} \left[-1 + \frac{1}{3} + \frac{1}{5} \right] = \frac{23}{15}$$

$$\Rightarrow \frac{23}{15} \left[\log_{x} 2 \right] = \frac{23}{15}$$

$$\log_{x} 2 = \frac{23}{15} \times \frac{15}{23} = 1 = \log_{2} 2$$

$$\{\because \log_{a} a = 1\}$$
Comparing,
$$x = 2$$

Multiple Choice Questions

correct Solution from the given four options (1 to 7): Question 1.

If $\log \sqrt{3} \ 27 = x$, then the value of x is (a) 3 (b) 4 (c) 6 (d) 9 Solution: $\log_{\sqrt{3}} \ 27 = x$ $(\sqrt{3})^x = 27$ $\Rightarrow \ (3)^{\frac{1}{2}xx} = 3^3$ $\Rightarrow \ 3^{\frac{x}{2}} = 3^3 \Rightarrow \frac{x}{2} = 3$ $\Rightarrow x = 6$ (c) **Question 2.** If $\log_{5} (0.04) = x$, then the value of x is (a) 2 (b) 4 (c) -4 (d) -2

Solution:

 $\log_5(0.04) = x$ $5^{x} = 0.04 = \frac{4}{100} = \frac{1}{25} = 5^{-2}$ $\therefore x = -2$ (d)

Question 3.

If $log_{0.5} 64 = x$, then the value of x is (a) -4 (b) -6 (c) 4 (d) 6 Solution: $\log_{0.5} 64 = x \Longrightarrow 0.5^x = 64$ $=\left(\frac{1}{2}\right)^x = 2^6 \Rightarrow 2^{-x} = 2^6$ $\therefore -x = 6 \Rightarrow x = -6$ (b)

Question 4. If $\log_{10}\sqrt[3]{5} x = -3$, then the value of x is

(a)
$$\frac{1}{5}$$
 (b) $-\frac{1}{5}$

$$\log_{\sqrt{5}} x = -3, \ (\sqrt[3]{5})^{-3} = x$$

$$x = (5^{\frac{1}{3}})^{-3} = 5^{\frac{1}{3}(-3)} = 5^{-1}$$

$$x = \frac{1}{5}$$
 (b)

Question 5.

If $\log (3x + 1) = 2$, then the value of x is

(a)
$$\frac{1}{3}$$
 (b) 99

(c) 33 (d)
$$\frac{19}{3}$$

Solution:

$$\log (3x + 1) = 2 = \log 100 \quad (\because \log 100 = 2)$$

$$\therefore 3x + 1 = 100 \Rightarrow 3x = 100 - 1 = 99$$

$$\Rightarrow x = \frac{99}{3} = 33 \qquad (c)$$

Question 6.

The value of $2 + \log_{10} (0.01)$ is (a)4 (b)3 (c)1 (d)0 Solution: $2 + \log_{10} (0.01)$ = 2 + (-2) = 2 - 2 = 0

(d)

Question 7.

The	value of	$\frac{\log 8 - \log 2}{\log 32}$	is
(a)	$\frac{2}{5}$	(b)	$\frac{1}{4}$
(c)	$-\frac{2}{5}$	(d)	$\frac{1}{3}$

Solution:

$$\frac{\log 8 - \log 2}{\log 32} = \frac{\log \frac{8}{2}}{\log 2^5}$$
$$= \frac{\log 4}{\log 2^5} = \frac{\log 2^2}{\log 2^5}$$
$$= \frac{2 \log 2}{5 \log 2} = \frac{2}{5}$$
(a)

Chapter Test

Question 1.

Expand $\log_a \sqrt[3]{x^7 y^8 \div \sqrt[4]{z}}$ Solution: $\log_a \sqrt[3]{x^7 y^8 \div \sqrt[4]{z}}$ $= \log_a \left(x^7 y^8 \div \sqrt[4]{z}\right)^{\frac{1}{3}} = \frac{1}{3} \log_a \left(x^7 y^8 \div \sqrt[4]{z}\right)$ $= \frac{1}{3} \left[\log_a x^7 y^8 - \log_a \sqrt[4]{z}\right]$ $= \frac{1}{3} \left[7 \log_a x + 8 \log_a y - \log_a (z)^{\frac{1}{3}}\right]$ $= \frac{1}{3} \left[7 \log_a x + 8 \log_a y - \frac{1}{4} \log_a z\right]$ $= \frac{7}{3} \log_a x + \frac{8}{3} \log_a y - \frac{1}{12} \log_a z$

Question 2. Find the value of $\log\sqrt{3} \sqrt{3} - \log_{5} (0.04)$ Solution:

$$\log_{\sqrt{3}} 3\sqrt{3} - \log_5 (0.04)$$

= $\log_{\sqrt{3}} 3 + \log_{\sqrt{3}} \sqrt{3} - \log_5 \frac{4}{100}$
= $\log_{\sqrt{3}} 3 + 1 - \log_5 \frac{1}{25}$
= $\log_{\sqrt{3}} 3 + 1 - \log_5 5^{-2}$
= $\log_{\sqrt{3}} 3 + 1 - (-2) \log_5 5$
= $\log_{\sqrt{3}} (\sqrt{3})^2 + 1 + 2 \times 1 = 2 \log_{\sqrt{3}} \sqrt{3} + 1 + 2$
= $2 \times 1 + 1 + 2 = 2 \times 1 + 2 = 5$

Question 3. Prove the following:

(i)
$$(\log x)^2 - (\log y)^2 = \log \frac{x}{y} \cdot \log x y$$

(ii) $2 \log \frac{11}{13} + \log \frac{130}{77} - \log \frac{55}{91} = \log 2$.

(1)
$$(\log x)^2 - (\log y)^2 = \log \frac{x}{y} \cdot \log x y$$

L.H.S = $(\log x)^2 - (\log y)^2 = (\log x - \log y) (\log x +$ $\log y$)

$$[:: A^2 - B^2 = (A - B) (A + B)]$$

$$= \left(\log\frac{x}{y}\right) (\log xy) = \log\frac{x}{y} \cdot \log xy = \text{R.H.S.}$$

Result is proved.

(ii)
$$2 \log \frac{11}{13} + \log \frac{130}{77} - \log \frac{55}{91} = \log 2$$

L.H.S. = $2 \log \frac{11}{13} + \log \frac{130}{77} - \log \frac{55}{91}$
= $2[\log 11 - \log 13] + [\log 130 - \log 77] - [\log 55 - \log 91]$
= $2 [\log 11 - \log 13] + [\log 13 \times 10 - \log 11 \times 7] - [\log 11 \times 2 - \log 13 \times 7]$
= $2 [\log 11 - \log 13] + [(\log 13 + \log 10) - (\log 11 + \log 7)] - [(\log 11 + \log 5) - (\log 13 + \log 7)]$
= $2 \log 11 - 2 \log 13 + \log 10 - \log 11 - \log 7 - \log 11 - \log 5 + \log 13 + \log 10 - \log 11 - \log 13 + \log 13 + \log 13)$
= $(2 \log 11 - \log 11 - \log 11) + (-2 \log 13 + \log 13 + \log 13) + \log 10 - \log 5 + (\log 7 - \log 7)$
= $0 + 0 + \log 10 - \log 5 + 0 = \log 10 - \log 5$
(10)

$$=\log\left(\frac{10}{5}\right) = \log 2 = \text{R.H.S}$$

Hence, Result is proved.

Question 4. If log (m + n) = log m + log n, show that n = $\frac{m}{m-1}$ Solution:

Question 5.

If $\log \frac{x+y}{2} = \frac{1}{2}(\log x + \log y)$, prove that x = y.

Solution:

$$\log \frac{x+y}{2} = \frac{1}{2} (\log x + \log y)$$

$$\Rightarrow \log \frac{x+y}{2} = \frac{1}{2} \log (x \times y)$$

$$\Rightarrow \log \frac{x+y}{2} = \log (x \times y)^{\frac{1}{2}}$$

Comparing, we get,

$$\therefore \ \frac{x+y}{2} = (x \times y)^{\frac{1}{2}} = xy^{\frac{1}{2}} \implies x+y = 2(xy)^{\frac{1}{2}}$$

quaring

$$\Rightarrow (x + y)^2 = 4xy \qquad \Rightarrow x^2 + y^2 + 2xy = 4xy$$
$$\Rightarrow x^2 + y^2 + 2xy - 4xy = 0 \Rightarrow x^2 + y^2 - 2xy = 0$$
$$\Rightarrow (x - y)^2 = 0 \Rightarrow x - y = 0$$
$$\therefore x = y \qquad \text{Hence proved.}$$

Question 6.

If a, b are positive real numbers, a > band $a^2 + b^2 = 27 ab$, prove that

$$\log\left(\frac{a-b}{5}\right) = \frac{1}{2} (\log a + \log b)$$

$$a^{2} + b^{2} = 27ab$$

$$\Rightarrow a^{2} + b^{2} - 2ab = 25ab$$

$$\Rightarrow \frac{a^{2} + b^{2} - 2ab}{25} = ab \Rightarrow \left(\frac{a - b}{5}\right)^{2} = ab$$

Taking log both sides, $\log\left(\frac{a - b}{5}\right)^{2} = \log ab$

$$\Rightarrow 2 \log\left(\frac{a-b}{5}\right) = \log a + \log b$$
$$\Rightarrow \log\left(\frac{a-b}{5}\right) = \frac{1}{2} (\log a + \log b)$$

Hence proved.

Solve the following equations for x

Question 7.

Solve the following equations for x:

(i)
$$\log_x \frac{1}{49} = -2$$

(ii) $\log_x \frac{1}{4\sqrt{2}} = -5$
(iii) $\log_x \frac{1}{243} = 10$
(iv) $\log_4 32 = x - 4$
(v) $\log_7 (2x^2 - 1) = 2$
(vi) $\log (x^2 - 21) = 2$
(vii) $\log_6 (x - 2) (x + 3) = 1$
(viii) $\log_6 (x - 2) + \log_6 (x + 3) = 1$
(ix) $\log (x + 1) + \log (x - 1) = \log 11 + 2 \log 3$.

$$(i) \log_x \frac{1}{49} = -2 \implies (x)^{-2} = \frac{1}{49}$$

$$\Rightarrow (x)^{-2} = \left(\frac{1}{7}\right)^2 \implies (x)^{-2} = (7)^{-2} \implies x = 7$$

$$(ii) \qquad \log_x \frac{1}{4\sqrt{2}} = -5$$

$$\Rightarrow \frac{-1}{5} \log_x \frac{1}{4\sqrt{2}} = 1 \implies -\frac{1}{5} \log_x \frac{1}{\sqrt{32}} = 1$$

$$\Rightarrow -\frac{1}{5} \log_x \frac{1}{\frac{5}{2}} = 1 \implies -\frac{1}{5} \log_x 2^{\frac{-5}{2}} = 1$$

$$\Rightarrow -\frac{1}{5} \times \left(\frac{-5}{2}\right) \log_x 2 = 1 \implies \frac{1}{2} \log_x 2 = 1$$

$$\Rightarrow \log_x (2^{\frac{1}{2}}) = 1 \implies \log_x \sqrt{2} = \log_x x$$

$$\therefore \qquad x = \sqrt{2}$$

$$(iii) \log_x \frac{1}{243} = 10$$

$$\Rightarrow \frac{1}{10} \log_x \frac{1}{243} = 1 \implies \frac{1}{10} \log_x \frac{1}{3^5} = 1$$

$$\Rightarrow \frac{1}{10} \log_x (3)^{-5} = 1 \Rightarrow \frac{1}{10} \times (-5) \times \log_x 3 = 1$$

$$\Rightarrow -\frac{1}{2} \log_x 3 = \log_x x \Rightarrow \log_x 3^{-\frac{1}{2}} = \log_x x$$

$$\Rightarrow \log_x \frac{1}{\sqrt{3}} = \log_x x$$

$$\therefore x = \frac{1}{\sqrt{3}}$$

(iv)
$$\log_4 32 = x - 4 \implies (4)^{x-4} = 32$$

 $\Rightarrow [(2)^2]^{x-4} = 2 \times 2 \times 2 \times 2 \times 2 \implies (2)^{2(x-4)} = (2)^5$
 $\Rightarrow (2)^{2x-8} = (2)^5 \implies 2x - 8 = 5 \implies 2x = 5 + 8$
 $\Rightarrow 2x = 13 \implies x = \frac{13}{2} = 6\frac{1}{2}$
(v) $\log_7 (2x^2 - 1) = 2 \implies (7)^2 = 2x^2 - 1$
 $\Rightarrow 49 = 2x^2 - 1 \implies 50 = 2x^2 \implies 2x^2 = 50$
 $\Rightarrow x^2 = \frac{50}{2} \implies x^2 = 25 \implies x^2 = \pm \sqrt{25}$
 $\Rightarrow x = +5, -5$

(vi)
$$\log (x^2 - 21) = 2$$

 $\Rightarrow (10)^2 = x^2 - 21 \Rightarrow 100 = x^2 - 21$
 $\Rightarrow x^2 - 21 = 100 \Rightarrow x^2 = 100 + 21$
 $\Rightarrow x^2 = 121 \Rightarrow x = \pm \sqrt{121} \Rightarrow x = \pm 11$
 $\therefore x = 11, -11$
(vii) $\log_6 (x - 2) (x + 3) = 1 = \log_6 6 \quad {\because \log_a a = 1}$
Comparing,
 $(x - 2) (x + 3) = 6$
 $\Rightarrow x^2 + 3x - 2x - 6 = 6$
 $\Rightarrow x^2 + x - 6 - 6 = 0$
 $\Rightarrow x^2 + x - 12 = 0$
 $\Rightarrow x^2 + 4x - 3x - 12 = 0$
 $\Rightarrow x (x + 4) - 3 (x + 4) = 0$
 $\Rightarrow (x + 4) (x - 3) = 0$
Either $x + 4 = 0$, then $x = -4$
or $x - 3 = 0$, then $x = 3$

Hence
$$x = 3, -4$$

(viii) $\log_6 (x-2) + \log_6 (x+3) = 1$
 $\Rightarrow \log_6 (x-2) (x+3) = 1 = \log_6 6 \quad \{\because \log_a a = 1\}$
Comparing,
 $(x-2) (x+3) = 6 \Rightarrow x^2 + 3x - 2x - 6 = 6$
 $\Rightarrow x^2 + x - 6 - 6 = 0 \Rightarrow x^2 + x - 12 = 0$
 $\Rightarrow x^2 + 4x - 3x - 12 = 0$
 $\Rightarrow x(x+4) - 3 (x+4) = 0$
 $\Rightarrow (x+4) (x-3) = 0$
Either $x + 4 = 0$, then $x = -4$
or $x - 3 = 0$, then $x = 3$
 $\therefore x = 3, -4$
(ix) $\log (x+1) + \log (x-1) = \log 11 + 2 \log 3$
 $\Rightarrow \log [(x+1) (x-1] = \log 11 + \log (3)^2$
 $\Rightarrow \log (x^2 - 1) = \log 11 + \log 9$
 $[\because a^2 - b^2 = (a+b) (a-b)]$
 $\Rightarrow \log (x^2 - 1) = \log (11 \times 9) \Rightarrow x^2 - 1 = 11 \times 9$
 $\Rightarrow x^2 - 1 = 99 \Rightarrow x^2 = 99 + 1 \Rightarrow x^2 = 100$
 $\Rightarrow x^2 = (10)^2 \Rightarrow x = 16$

Question 8. Solve for x and y:

 $\frac{\log x}{3} = \frac{\log y}{2}$ and $\log (xy) = 5$ Solution:

$$\frac{\log x}{3} = \frac{\log y}{2}$$

$$\Rightarrow 2 \log x = 3 \log y$$

$$\Rightarrow 2 \log x - 3 \log y = 0 \dots(i)$$
and $\log xy = 5$

$$\Rightarrow \log x + \log y = 5 \dots(ii)$$
Multiply (ii) by 3 and (i) by 1,
 $2 \log x - 3 \log y = 0$
 $3 \log x + 3 \log y = 15$
Adding, $5 \log x = 15$

$$\Rightarrow \log x = \frac{15}{5} = 3 \Rightarrow \frac{1}{3} \log x = 1 = \log 10$$

$$\Rightarrow \log x^{\frac{1}{3}} = \log 10$$

$$\therefore x^{\frac{1}{3}} = 10$$

$$\Rightarrow x = 10^{3} = 1000 \quad (\because \log 10 = 1)$$
Hence $x = 1000$
Substituting the value of $\log x = 3$ in (ii)
 $3 + \log y = 5$

$$\Rightarrow \log y = 5 - 3 = 2 \Rightarrow \frac{1}{2} \log y = 1$$

$$\Rightarrow \log y^{\frac{1}{2}} = \log 10 \quad (\because \log 10 = 1)$$

$$\therefore y^{\frac{1}{2}} = 10$$

$$\Rightarrow y = (10)^{2} = 100$$
Hence $x = 1000$ and $y = 100$

Question 9.

If $a = 1 + \log_x yz$, $6 = 1 + \log_y zx$ and $c=1 + \log_z xy$, then show that ab + bc + ca = abc.

Solution:

$$a = 1 + \log_{x} yz$$

$$b = 1 + \log_{y} zx$$

$$c = 1 + \log_{z} xy$$

$$a = 1 + \log_{x} yz = \log_{x} x + \log_{x} yz$$

$$\Rightarrow a = \log_{x} xyz \Rightarrow \frac{1}{a} = \log_{xyz} x$$
Similarly,

$$\frac{1}{b} = \log_{xyz} y \text{ and } \frac{1}{c} = \log_{xyz} z$$
Now $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \log_{xyz} x + \log_{xyz} y + \log_{xyz} z$

$$= \frac{\log x}{\log_{xyz}} + \frac{\log y}{\log_{xyz}} + \frac{\log z}{\log_{xyz}}$$

$$= \frac{\log x + \log y + \log z}{\log_{xyz}}$$

$$= \frac{\log xyz}{\log_{xyz}} = 1$$

$$\Rightarrow \frac{bc + ca + ab}{abc} = 1 \Rightarrow ab + bc + ca = abc$$

Hence proved.